Формула работы тепловой машины. Какой процент кпд у холодильника. Подробнее о потерях

КПД тепловой машины связан с количеством теплоты, полученным за цикл от нагревателя, и количеством теплоты, отданным холодильнику, соотношением:

КПД - формула

η= Q полезн. /Q общ. *100%

КПД равен отношению полезного количества теплоты к полному её количеству.

η=A /Q общ. *100%

A - работа.

Полезная теплота (энергия) - энергия, израсходованная только на достижение поставленной цели (в общем плане).

Полная энергия - общее количество затраченной энергии (то есть с учётом потерь на какие-либо факторы).

Полная энергия (для тепловой машины) - сумма полезной энергии и энергии, и энергии, отданной холодильнику: Q полн. =Q полезн. +Q хол.

Значит, полезная энергия равна разности полной энергии и энергии, отданной холодильнику: Q полезн. =Q полн. -Q хол.

Тепловая машина с КПД выше 100% не может существовать.

Если известен процент КПД, то количество теплоты можно рассчитать с помощью пропорций. зная лишь одну из составляющих теплоты и КПД, можно вычислить остальные составляющие. Проценты КПД прямо пропорциональны полезной работе. Например, если КПД тепловой машины равен 10% и эта машина машина совершила работу например в 20 ДЖ за цикл работы, то вся теплота (100%) равна 200 Дж, из которых 180 (90%) отдано холодильнику.

Зависимость КПД от температуры

Также КПД зависит от температуры нагревательного элемента и холодильника:

η=(T н -T х )/T н - КПД равен отношению разности температур нагревателя и холодильника к температуре нагревателя.

Надо учитывать, что температура холодильника не может быть выше температуры нагревателя, иначе тепловая машина не имеет смысла существования.

При неизменной температуре холодильника, чем выше температура нагревателя, тем выше КПД, зависимость по гиперболе.

Внутренняя энергия газа является функцией состояния газа, то есть зависит только от того, в каком состоянии находится газ. Если газ в результате циклического процесса возвращается в исходное состояние, изменение его внутренней энергии будет равным нулю.

Если на диаграмме p-V площадь фигуры, ограниченной линиями циклического процесса отлична от нуля, то газ совершил работу.

При циклическом процессе на диаграмме p-V, если газ совершил работу, значит суммарное количество полученной и отданной теплоты равно нулю, так как всё полученное количество теплоты послностью расходуется на изменение внутренней энергии и на совершение работы газом. Газ при возвращении в исходное состояние имеет ту же внутреннюю энергию, так как она является функцией состояния, а значит, вся полученная энергия была потрачена на работу.

КПД тепловой машины можно увеличить, уменьшив температуру холодильника или увеличив температуру нагревателя.

На диаграмме p-V работа газа в результате циклического процесса соответствует площади внутри цикла.

После совершения любого циклического процесса газ возвращается в первоначальное состояние. Внутренняя энергия является функцией состояния, а значит в результате совершения циклического процесса её изменение равно нулю.

КПД тепловой машины линейно убывает при возрастании температуры холодильника.

На диаграмме p-T газ не совершает работу, если прямая графика изменения его состояния проходит через начало координат, так как в этом случае объём не изменяется.

Положительное количество теплоты самопроизвольно не может перейти от более холодного тела к более горячему.

Нельзя создать циклический тепловой двигатель, с помощью которого можно энергию, полученную от нагревателя, полностью превратить в механическую работу.

Второе начало термодинамики запрещает так называемые вечные двигатели второго рода, показывая, что КПД не может равняться 100%.

Второе начало термодинамики: КПД тепловой машины не может быть больше или равен 100%.

Постулат Клаузиуса : "Невозможен процесс, единственным результатом которого являлась бы передача тепла от более холодного тела к более горячему. Тепло самопроизвольно может переходить только от более горячего тела к более холодному.".

Постулат Томпсона (Кельвина): "Невозможен круговой процесс, единственным результатом которого было бы производство работы за счёт охлаждения теплового резервуара".

Возможна передача энергии от тела с меньшей температурой к телу с большей температурой путём совершения работы.

Расширяясь, газ совершает положительную работу, а сжимаясь - отрицательную.

Внутренняя энергия фиксированного количества одноатомного идеального газа зависит только от температуры: ΔU=(3/2)v R ΔT.

При адиабатическом процессе теплообмен отсутствует.

Цикл Карно состоит из двух адиабат, изотермического сжатия и расширения. Внутренняя энергия газа изменяется на адиабатах, то есть на двух участках этого цикла.

Пример. Средняя сила тяги двигателя составляет 882 Н. На 100 км пути он потребляет 7 кг бензина. Определите КПД его двигателя. Сначала найдите полезную работу. Она равна произведению силы F на расстояние S, преодолеваемое телом под ее воздействием Ап=F∙S. Определите количество теплоты, которое выделится при сжигании 7 кг бензина, это и будет затраченная работа Аз=Q=q∙m, где q – удельная теплота сгорания топлива, для бензина она равна 42∙10^6 Дж/кг, а m – масса этого топлива. КПД двигателя будет равен КПД=(F∙S)/(q∙m)∙100%= (882∙100000)/(42∙10^6∙7)∙100%=30%.

В общем случае чтобы найти КПД, любой тепловой машины (двигателя внутреннего сгорания, парового двигателя, турбины и т.д.), где работа выполняется газом, имеет коэффициент полезного действия равный разности теплоты отданной нагревателем Q1 и полученной холодильником Q2, найдите разность теплоты нагревателя и холодильника, и поделите на теплоту нагревателя КПД= (Q1-Q2)/Q1. Здесь КПД измеряется в дольных единицах от 0 до 1, чтобы перевести результат в проценты, умножьте его на 100.

Чтобы получить КПД идеальной тепловой машины (машины Карно), найдите отношение разности температур нагревателя Т1 и холодильника Т2 к температуре нагревателя КПД=(Т1-Т2)/Т1. Это предельно возможный КПД для конкретного типа тепловой машины с заданными температурами нагревателя и холодильника.

Для электродвигателя найдите затраченную работу как произведение мощности на время ее выполнения. Например, если электродвигатель крана мощностью 3,2 кВт поднимает груз массой 800 кг на высоту 3,6 м за 10 с, то его КПД равен отношению полезной работы Ап=m∙g∙h, где m – масса груза, g≈10 м/с² ускорение свободного падения, h – высота на которую подняли груз, и затраченной работы Аз=Р∙t, где Р – мощность двигателя, t – время его работы. Получите формулу для определения КПД=Ап/Аз∙100%=(m∙g∙h)/(Р∙t) ∙100%=%=(800∙10∙3,6)/(3200∙10) ∙100%=90%.

Видео по теме

Источники:

  • как определить кпд

КПД (коэффициент полезного действия) – безразмерная величина, характеризующая эффективность работы. Работа есть сила, влияющая на процесс в течение некоторого времени. На действие силы затрачивается энергия. Энергия вкладывается в силу, сила вкладывается в работу, работа характеризуется результативностью.

Инструкция

Расчет КПД с определения энергии, потраченной непосредственно для достижения результата. Она может быть выражена в единицах, необходимых для достижения результата энергии, силы, мощности.
Чтобы не ошибиться, полезно держать в уме следующую схему. Простейшая включает в себя элемента: «рабочий », источник энергии, органы управления, пути и элементы проведения и преобразования энергии. Энергия, потраченная на достижение результата – это энергия, затраченная только «рабочим инструментом».

Далее вы определяете энергию, реально потраченную всей системой в процессе достижения результата. То есть не только «рабочим инструментом», но и органами управления, преобразователями энергии, а также к затратам следует отнести энергию, рассеянную в путях проведения энергии.

И далее вы подсчитываете коэффициент полезного действия по формуле:
К.П.Д. = (А / В)*100%, где
А – энергия, необходимая на достижение результата
В – энергия, реально затраченная системой на достижение результатов.Например: на проведение электроинструментальных работ было потрачено 100 кВт, при этом вся энергосистема цеха за это время потребила 120 кВт. КПД системы (энергосистемы цеха) в этом случае будет равен 100 кВт / 120 кВт = 0.83*100% = 83%.

Видео по теме

Обратите внимание

Часто понятие КПД применяют, оценивая отношение запланированных расходов энергии и реально потраченных. Например, соотношение запланированных объемов работ (или времени, необходимого для выполнения работы) к реально произведенным работам и потраченному времени. Здесь следует быть предельно внимательным. Например, запланировали затратить на работы 200 кВт, а затратили 100 кВт. Или запланировали произвести работы за 1 час, а затратили 0.5 часа; в обоих случаях КПД получается 200%, что невозможно. На самом деле в таких случаях имеет место, как говорят экономисты, «стахановский синдром», то есть сознательное занижение плана по отношению к реально необходимым затратам.

Полезный совет

1. Затраты энергии вы должны оценивать в одних и тех же единицах.

2. Затраченная всей системой энергия не может быть меньше потраченной непосредственно на достижение результата, то есть КПД не может быть больше 100%.

Источники:

  • как посчитать энергии

Совет 3: Как рассчитать эффективность танка в игре World of Tanks

Рейтинг эффективности танка или его КПД – один из комплексных показателей игрового мастерства. Его учитывают при приеме в топовые кланы, в киберспортивные команды, в роты. Формула расчета довольно сложна, поэтому игроки пользуются различными онлайн-калькуляторами.

Формула расчета

Одна из первых формул расчета выглядела так:
R=K x (350 – 20 x L) + Ddmg x (0,2 + 1,5 / L) + S x 200 + Ddef x 150 + C x 150

Сама формула приведена на картинке. В этой формуле имеются следующие переменные:
- R – боевая эффективность игрока;
- К – среднее количество уничтоженных танков (общее количество фрагов, деленное на общее количество боев):
- L – средний уровень танка;
- S – среднее количество обнаруженных танков;
- Ddmg – среднее количество нанесенного урона за бой;
- Ddef – среднее количество очков защиты базы;
- С – среднее количество очков захвата базы.

Значение полученных цифр:
- менее 600 – плохой игрок; такой КПД имеют около 6% всех игроков;
- от 600 до 900 – игрок ниже среднего; такой КПД имеют 25% всех игроков;
- от 900 до 1200 – средний игрок; такую эффективность имеют 43% игроков;
- от 1200 и выше – сильный игрок; таких игроков около 25%;
- свыше 1800 – уникальный игрок; таких не более 1%.

Американские игроки используют свою формулу WN6, выглядящую так:
wn6=(1240 – 1040 / (MIN (TIER,6)) ^ 0.164) x FRAGS + DAMAGE x 530 / (184 x e ^ (0.24 x TIER) + 130) + SPOT x 125 + MIN(DEF,2.2) x 100 + ((185 / (0.17+ e ^ ((WINRATE - 35) x 0.134))) - 500) x 0.45 + (6-MIN(TIER,6)) x 60

В этой формуле:
MIN (TIER,6) – средний уровень танка игрока, если он больше 6, используется значение 6
FRAGS – среднее количество уничтоженных танков
TIER – средний уровень танков игрока
DAMAGE – средний урон в бою
MIN (DEF,2,2) – среднее количество сбитых очков захвата базы, если значение больше 2,2 используется 2,2
WINRATE – общий процент побед

Как видно, в этой формуле не учитываются очки захвата базы, количество фрагов на низкоуровневой технике, процент побед и влияние начального засвета на рейтинге сказываются не очень сильно.

Компания Wargeiming ввела в обновлении показатель личного рейтинга эффективности игрока, который рассчитывается по более сложной формуле, учитывающей все возможные статистические показатели.

Как повысить эффективность

Из формулы Кх(350-20хL) видно, что чем выше уровень танка, тем меньшее количество очков эффективности получается за уничтожение танков, зато большее за нанесение урона. Поэтому, играя на низкоуровневой технике, старайтесь брать больше фрагов. На высокоуровневой – наносить больше урона (дамага). Количество очков полученных или сбитых очков захвата базы на рейтинг влияют несильно, причем за сбитые очки захвата очков КПД начисляется больше, чем за полученные очки захвата базы.

Поэтому большинство игроков улучшают свою статистику, играя на низших уровней, в так называемой песочнице. Во-первых, большинство игроков на низших уровнях – новички, не имеющие навыков, не использующие прокачанный экипаж с умениями и навыками, не использующие дополнительное оборудование, не знающие преимуществ и недостатков того или иного танка.

Независимо от того, на какой технике играете, старайтесь сбивать как можно большее количество очков захвата базы. Взводные бои сильно повышают рейтинг эффективности, так как игроки во взводе действуют скоординировано и чаще добиваются победы.

Термин «КПД» - это аббревиатура, образованная от словосочетания «коэффициент полезного действия». В самом общем виде он представляет собой соотношение затраченных ресурсов и результата выполненной с их использованием работы.

КПД

Понятие коэффициента полезного действия (КПД) может быть применено к самым различным типам устройств и механизмов, работа которых основана на использовании каких-либо ресурсов. Так, если в качестве такого ресурса рассматривать энергию, используемую для работы системы, то результатом этого следует считать объем полезной работы, выполненной на этой энергии.

В общем виде формулу КПД можно записать следующим образом: n = A*100%/Q. В данной формуле символ n применяется в качестве обозначения КПД, символ A представляет собой объем выполненной работы, а Q - объем затраченной энергии. При этом стоит подчеркнуть, что единицей измерения КПД являются проценты. Теоретически максимальная величина этого коэффициента составляет 100%, однако на практике достигнуть такого показателя практически невозможно, так как в работе каждого механизма присутствуют те или иные потери энергии.

КПД двигателя

Двигатель внутреннего сгорания (ДВС), представляющий собой один из ключевых компонентов механизма современного автомобиля, также представляет собой вариант системы, основанной на использовании ресурса - бензина или дизельного топлива. Поэтому для нее можно рассчитать величину КПД.

Несмотря на все технические достижения автомобильной промышленности, стандартный КПД ДВС остается достаточно низким: в зависимости от использованных при конструировании двигателя технологий он может составлять от 25% до 60%. Это связано с тем, что работа такого двигателя сопряжена со значительными потерями энергии.

Так, наибольшие потери эффективности работы ДВС приходятся на работу системы охлаждения, которая забирает до 40% энергии, выработанной двигателем. Значительная часть энергии - до 25% - теряется в процессе отведения отработанных газов, то есть попросту уносится в атмосферу. Наконец, примерно 10% энергии, вырабатываемой двигателем, уходит на преодоление трения между различными деталями ДВС.

Поэтому технологи и инженеры, занятые в автомобильной промышленности, прилагают значительные усилия для повышения КПД двигателей путем сокращения потерь по всем перечисленным статьям. Так, основное направление конструкторских разработок, направленное на уменьшение потерь, касающихся работы системы охлаждения, связано с попытками уменьшить размер поверхностей, через которые происходит теплоотдача. Уменьшение потерь в процессе газообмена производится преимущественно с использованием системы турбонаддува, а снижение потерь, связанных с трением, - посредством применения более технологичных и современных материалов при конструировании двигателя. Как утверждают специалисты, применение этих и других технологий способно поднять КПД ДВС до уровня 80% и выше.

Видео по теме

Источники:

  • О ДВС, его резервах и перспективах развития глазами специалиста

Главное значение полученной Карно формулы (5.12.2) для КПД идеальной машины состоит в том, что она определяет максимально возможный КПД любой тепловой машины.

Карно доказал, основываясь на втором законе термодинамики*, следующую теорему: любая реальная тепловая машина, работающая с нагревателем температуры Т 1 и холодильником температуры Т 2 , не может иметь коэффициент полезного действия, превышающий КПД идеальной тепловой машины.

* Карно фактически установил второй закон термодинамики до Клаузиуса и Кельвина, когда еще первый закон термодинамики не был сформулирован строго.

Рассмотрим вначале тепловую машину, работающую по обратимому циклу с реальным газом. Цикл может быть любым, важно лишь, чтобы температуры нагревателя и холодильника были Т 1 и Т 2 .

Допустим, что КПД другой тепловой машины (не работающей по циклу Карно) η’ > η. Машины работают с общим нагревателем и общим холодильником. Пусть машина Карно работает по обратному циклу (как холодильная машина), а другая машина - по прямому циклу (рис. 5.18). Тепловая машина совершает работу, равную согласно формулам (5.12.3) и (5.12.5):

Холодильную машину всегда можно сконструировать так, чтобы она брала от холодильника количество теплоты Q 2 = ||

Тогда согласно формуле (5.12.7) над ней будет совершаться работа

(5.12.12)

Так как по условию η" > η, то А" > А. Поэтому тепловая машина может привести в действие холодильную машину, да еще останется избыток работы. Эта избыточная работа совершается за счет теплоты, взятой от одного источника. Ведь холодильнику при действии сразу двух машин теплота не передается. Но это противоречит второму закону термодинамики.

Если допустить, что η > η", то можно другую машину заставить работать по обратному циклу, а машину Карно - по прямому. Мы опять придем к противоречию со вторым законом термодинамики. Следовательно, две машины, работающие по обратимым циклам, имеют одинаковые КПД: η" = η.

Иное дело, если вторая машина работает по необратимому циклу. Если допустить η" > η, то мы опять придем к противоречию со вторым законом термодинамики. Однако допущение т|" < г| не противоречит второму закону термодинамики, так как необратимая тепловая машина не может работать как холодильная машина. Следовательно, КПД любой тепловой машины η" ≤ η, или

Это и есть основной результат:

(5.12.13)

Кпд реальных тепловых машин

Формула (5.12.13) дает теоретический предел для максимального значения КПД тепловых двигателей. Она показывает, что тепловой двигатель тем эффективнее, чем выше температура нагревателя и ниже температура холодильника. Лишь при температуре холодильника, равной абсолютному нулю, η = 1.

Но температура холодильника практически не может быть намного ниже температуры окружающего воздуха. Повышать температуру нагревателя можно. Однако любой материал (твердое тело) обладает ограниченной теплостойкостью, или жаропрочностью. При нагревании он постепенно утрачивает свои упругие свойства, а при достаточно высокой температуре плавится.

Сейчас основные усилия инженеров направлены на повышение КПД двигателей за счет уменьшения трения их частей, потерь топлива вследствие его неполного сгорания и т. д. Реальные возможности для повышения КПД здесь все еще остаются большими. Так, для паровой турбины начальные и конечные температуры пара примерно таковы: Т 1 = 800 К и Т 2 = 300 К. При этих температурах максимальное значение коэффициента полезного действия равно:

Действительное же значение КПД из-за различного рода энергетических потерь приблизительно равно 40%. Максимальный КПД - около 44% - имеют двигатели внутреннего сгорания.

Коэффициент полезного действия любого теплового двигателя не может превышать максимально возможного значения
, где Т 1 - абсолютная температура нагревателя, а Т 2 - абсолютная температура холодильника.

Повышение КПД тепловых двигателей и приближение его к максимально возможному - важнейшая техническая задача.


Из-за того что часть теплоты при работе тепловых двигателей неизбежно передается холодильнику, КПД двигателей не может равняться единице. Представляет большой интерес нахождение максимально возможного КПД теплового двигателя, работающего с нагревателем температуры Тг и холодильником температуры Т2. Впервые это сделал французский инженер и ученый Сади Карно.
Идеальная тепловая машина Карно
Карно придумал идеальную тепловую машину с идеальным газом в качестве рабочего тела. Все процессы в машине Карно рассматриваются как равновесные (обратимые).
В машине осуществляется круговой процесс или цикл, при котором система после ряда преобразований возвращается в исходное состояние. Цикл Карно состоит из двух изотерм и

двух, адиабат (рис. 5.16). Кривые 1 -2 и 3-4 - это изотермы, а 2-3 и 4-1 - адиабаты.
Сначала газ расширяется изотермически при температуре Т1. При этом он получает от нагревателя количество теплоты Затем он расширяется адиабатно и не обменивается теплотой с окру-жающими телами. Далее следует
изотермическое сжатие газа при о~ ^
температуре Т2. Газ отдает в этом рис g jg
процессе холодильнику количество теплоты Q2 Наконец газ сжимается адиабатно и возвращается в начальное состояние.
При изотермическом расширении газ совершает работу > 0, равную количеству теплоты При адиабатном рас-ширении 2-3 положительная работа А"3 равна уменьшению внутренней энергии при охлаждении газа от температуры 7\ до температуры Т2: А"3 = -AU12 = ЩТХ) - U (Т2).
Изотермическое сжатие при температуре Т2 требует совершения над газом работы А2. Газ совершает соответственно отри цательную работу А 2
Q2. Наконец, адиабатное сжатие требует совершения над газом работы А4 = AU21. Работа самого
Карно Никола Леонар Сади (1796- 1832) - талантливый французский инженер и физик, один из основателей термодинамики. В своем труде «Раз-мышление о движущей силе огня и о машинах, способных развивать эту силу» (1824 г.) впервые показал, что тепловые двигатели могут совершать работу лишь в процессе перехода теплоты от горячего тела к холодному. Карно придумал идеальную тепловую машину, вычислил коэффициент полезного действия идеальной машины и доказал, что этот коэффициент является максимально возможным для любого реального теплового двигателя. газа А\ = -Л4 = -At/2i = - ЩТх). Поэтому суммарная ра
бота газа при двух адиабатных процессах равна нулю.
За цикл газ совершает работу
А"= А[ + A"2=Q1 + Q2 = IQJ - |Q2|. (5.12.1)
Эта работа численно равна площади фигуры, ограниченной кривой цикла (заштрихована на рис. 5.16).
Для вычисления коэффициента полезного действия нужно вычислить работы при изотермических процессах 1-2 и 3-4. Расчеты приводят к следующему результату:
(5.12.2) Коэффициент полезного действия тепловой машины Карно равен отношению разности абсолютных температур нагревателя и холодильника к абсолютной температуре нагревателя.
Можно выразить работу, совершаемую машиной за цикл, и количество отданной холодильнику теплоты Q2 через КПД ма-шины и полученное от нагревателя количество теплоты Согласно определению КПД
Л" = л Количество теплоты
Q2 = А" - = TlQi - Qi = QiOl - D- (5.12.4)
Так как t) |Q2| = (1-71)QI. (5.12.5)
Идеальная холодильная машина
Цикл Карно обратим, поэтому его можно провести в обратном направлении. Это будет уже не тепловая машина, а идеальная холодильная машина.
Процессы пойдут в обратном порядке. Работа А совершается для приведения в действие машины. Количество теплоты Qx передается рабочим телом нагревателю более высокой тем-пературы, а количество теплоты Q2 поступает к рабочему телу от холодильника (рис. 5.17). Теплота передается от холодного тела к горячему, поэтому машина и называется холодильной.?
Количество теплоты Q

Количество теплоты Q2
РаботаА
ХОЛОДИЛЬНИК температуры Т2
Рис. 5.17
Но второму закону термодинамики это не противоречит: теплота переходит не сама собой, а за счет совершения работы.
Выразим количества теплоты Q1 и Q2 через работу А и КПД машины Т|. Так как согласно формуле (5.12.3) А" = riQj = -А, то

(5.12.6)
Передаваемое рабочим телом количество теплоты, как всегда, отрицательно. Очевидно, |Qj| = ^. Согласно выражению
(5.12.4) количество теплоты Q2 = QiCn ~ 1) или с учетом соотношения (5.12.3) (5.12.7)
q2= V1a>0- Такое количество теплоты получает рабочее тело от холо-дильника.
Холодильная машина работает как тепловой насос. Горячему телу передается количество теплоты Qj, большее того ко- личества, которое забирается от холодильника. Согласно фор-муле (5.12.7) Q2 = ^ -А = -Qj - А. Отсюда
| Q1\=A + Q2. (5.12.8)
Эффективность холодильной машины определяется отно-
шением є = -г, так как ее назначение отнимать как можно
большее количество теплоты от охлаждаемой системы при совершении как можно меньшей работы. Величина є называется холодильным коэффициентом. Для идеальной холодильной машины согласно формулам (5.12.7) и (5.12.2)
Qn Т2
т. е. холодильный коэффициент тем больше, чем меньше разность температур, и тем меньше, чем меньше температура того тела, от которого отбирается теплота. Очевидно, холодильный коэффициент может быть больше единицы. Для реальных холодильников он более трех. Разновидностью холодильной машины является кондиционер, который забирает теплоту из комнаты и передает ее окружающему воздуху.
Тепловой насос
При отоплении помещений электрообогревателями энергетически выгоднее использовать тепловой насос, а не просто нагреваемую током спираль. Насос дополнительно будет передавать в помещение количество теплоты Q2 из окружающего воздуха. Однако это не делают из-за дороговизны холодильной установки по сравнению с обычной электрической печкой или камином.
При использовании теплового насоса практический интерес представляет количество теплоты Qj, получаемое нагреваемым телом, а не количество теплоты Q2, отдаваемое холодному телу. Поэтому характеристикой теплового насоса является так на-
lQi|
зываемый отопительный коэффициент?от= .
Для идеальной машины, учитывая соотношения (5.12.6) и (5.12.2), будем иметь Єот=т^V" (5.12.10)
1 1 ~ 1 2
где 7"1 - абсолютная температура нагреваемого помещения, а Г2 - абсолютная температура атмосферного воздуха. Таким образом, отопительный коэффициент всегда больше единицы. Для реальных устройств при температуре окружающей среды t2 = 0 °С и температуре помещения t-l = 25 °С єот = 12. В помещение передается количество теплоты, почти в 12 раз превышающее количество затраченной электроэнергии.
Максимальный КПД тепловых машин
(теорема Карно)
Главное значение полученной Карно формулы (5.12.2) для КПД идеальной машины состоит в том, что она определяет максимально возможный КПД любой тепловой машины.
Карно доказал, основываясь на втором законе термодинамики, следующую теорему: любая реальная тепловая машина, работающая с нагревателем температуры Tt и холодильником температуры Т2, не может иметь коэффициент полезного действия, превышающий КПД идеальной тепловой машины.
Рассмотрим вначале тепловую машину, работающую по об-ратимому циклу с реальным газом. Цикл может быть любым, важно лишь, чтобы температуры нагревателя и холодильника были Т1ъТ2.
Допустим, что КПД другой тепловой машины (не работающей по циклу Карно) г\" > Г|. Машины работают с общим нагревателем и общим холодильником. Пусть машина Карно работает по обратному циклу (как холодильная машина), а другая машина - по прямому циклу (рис. 5.18). Тепловая машина совершает работу, равную согласно формулам (5.12.3) и (5.12.5)
A" = r\"Q[ = ^_,\Q"2\. (5.12.11)
Холодильную машину всегда можно сконструировать так, чтобы она брала от холодильника количество теплоты Q2 = \Q2\.

Тогда согласно формуле (5.12.7) над ней будет совершаться работа
А = (5.12.12)
Так как по условию Г|" > т|, то А" > А. Поэтому тепловая машина может привести в действие холодильную машину, да еще останется избыток работы. Эта избыточная работа совершается за счет теплоты, взятой от одного источника. Ведь холодильнику при действии сразу двух машин теплота не передается. Но это противоречит второму закону термодинамики.
Если допустить, что Т| > Т|", то можно другую машину заставить работать по обратному циклу, а машину Карно - по прямому. Мы опять придем к противоречию со вторым законом термодинамики. Следовательно, две машины, работающие по обратимым циклам, имеют одинаковые КПД: г|" = Г|.
Иное дело, если вторая машина работает по необратимому циклу. Если допустить Г)" > Г), то мы опять придем к противоречию со вторым законом термодинамики. Однако допущение Г)"

Это и есть основной результат:

(5.12.13)
КПД реальных тепловых машин
Формула (5.12.13) дает теоретический предел для максимального значения КПД тепловых двигателей. Она показывает, что тепловой двигатель тем эффективнее, чем выше температура нагревателя и ниже температура холодильника. Лишь при температуре холодильника, равной абсолютному нулю, Г| = 1.
Но температура холодильника практически не может быть намного ниже температуры окружающего воздуха. Повышать температуру нагревателя можно. Однако любой материал (твердое тело) обладает ограниченной теплостойкостью, или жаропрочностью. При нагревании он постепенно утрачивает свои упругие свойства, а при достаточно высокой температуре плавится.
Сейчас основные усилия инженеров направлены на повышение КПД двигателей за счет уменьшения трения их частей, потерь топлива вследствие его неполного сгорания и т. д. Реальные возможности для повышения КПД здесь все еще остаются большими. Так, для паровой турбины начальные и конечные температуры пара примерно таковы: Т1 = 800 К и Т2 = 300 К. При этих температурах максимальное значение коэффициента полезного действия равно
Т1 - Т2
Лтах= =0,62 = 62%.
Действительное же значение КПД из-за различного рода энергетических потерь приблизительно равно 40%. Максимальный КПД - около 44% - имеют двигатели внутреннего сгорания.
Коэффициент полезного действия любого теплового
двигателя не может превышать максимально воз-
Т1~Т2
можного значения Лщах = -^-» - абсолют-
11
ная температура нагревателя, а Т2 - абсолютная
температура холодильника.
Повышение КПД тепловых двигателей и приближение его к максимально возможному - важнейшая
техническая задача.

Наверное, каждый задавался вопросом о КПД (Коэффициенте Полезного Действия) двигателя внутреннего сгорания. Ведь чем выше этот показатель, тем эффективнее работает силовой агрегат. Самым эффективным на данный момент времени считается электрический тип, его КПД может достигать до 90 – 95 %, а вот у моторов внутреннего сгорания, будь то дизель или бензин он мягко сказать, далек от идеала …


Если честно, то современные варианты моторов намного эффективнее своих собратьев, которые были выпущены лет так 10 назад, и причин этому масса. Сами подумайте раньше вариант 1,6 литра, выдавал всего 60 – 70 л.с. А сейчас это значение может достигать 130 – 150 л.с. Это кропотливая работа над увеличением КПД, в который каждый «шажок» дается методом проб и ошибок. Однако давайте начнем с определения.

– это значение отношения двух величин, мощности которая подается на коленчатый вал двигателя к мощности получаемой поршнем, за счет давления газов, которые образовались путем воспламенения топлива.

Если сказать простым языком, то это преобразование термической или тепловой энергии, которая появляется при сгорании топливной смеси (воздух и бензин) в механическую. Нужно отметить что такое уже бывало, например у паровых силовых установок — также топливо под воздействием температуры толкало поршни агрегатов. Однако там установки были в разы больше, да и само топливо было твердое (обычно уголь или дрова), что затрудняло его перевозку и эксплуатацию, постоянно нужно было «поддавать» в печь лопатами. Моторы внутреннего сгорания намного компактнее и легче «паровых», да и топливо намного проще хранить и перевозить.

Подробнее о потерях

Если забегать вперед, то можно уверенно сказать что КПД бензинового двигателя находится в пределах от 20 до 25 %. И на это много причин. Если взять поступающее топливо и пересчитать его на проценты, то мы как бы получаем «100% энергии», которая передается двигателю, а дальше пошли потери:

1) Топливная эффективность . Не все топливо сгорает, небольшая его часть уходит с отработанными газами, на этом уровне мы уже теряем до 25% КПД. Конечно, сейчас топливные системы улучшаются, появился инжектор, но и он далек от идеала.

2) Второе это тепловые потер и . Двигатель прогревает себя и множество других элементов, такие как радиаторы, свой корпус, жидкость которая в нем циркулирует. Также часть тепла уходит с выхлопными газами. На все это еще до 35% потери КПД.

3) Третье это механические потери . НА всякого рода поршни, шатуны, кольца – все места, где есть трение. Сюда можно отнести и потери от нагрузки генератора, например чем больше электричества вырабатывает генератор, тем сильнее он тормозит вращение коленвала. Конечно, смазки также шагнули вперед, но опять же полностью трение еще никому не удалось победить – потери еще 20 %

Таким образом, в сухом остатке, КПД равняется около 20%! Конечно из бензиновых вариантов есть выделяющиеся варианты, у которых этот показатель увеличен до 25%, но их не так много.

ТО есть если ваш автомобиль расходует топлива 10 литров на 100 км, то из них всего 2 литра уйдут непосредственно на работу, а остальные это потери!

Конечно можно увеличить мощность, например за счет расточки головки, смотрим небольшое видео.

Если вспомнить формулу то получается:

У какого двигателя самый большой КПД?

Теперь хочу поговорить о бензиновом и дизельном вариантах, и выяснить кто же из них наиболее эффективный.

Если сказать простыми, языком и не лезть в дебри технических терминов то – если сравнить два КПД – эффективнее из них, конечно же дизель и вот почему:

1) Бензиновый двигатель преобразует только 25 % энергии в механическую, а вот дизельный около 40%.

2) Если оснастить дизельный тип турбонаддувом, то можно достигнуть КПД в 50-53%, а это очень существенно.

Так почему он так эффективен? Все просто — не смотря на схожей тип работы (и тот и другой являются агрегатами внутреннего сгорания) дизель выполняет свою работу намного эффективнее. У него большее сжатие, да и топливо воспламеняется от другого принципа. Он меньше нагревается, а значит происходит экономия на охлаждении, у него меньше клапанов (экономия на трении), также у него нет, привычных нам, катушек зажигания и свечей, а значит не требуется дополнительные энергетические затраты от генератора. Работает он с меньшими оборотами, не нужно бешено раскручивать коленвал — все это делает дизельный вариант чемпионом по КПД.

О топливной эффективности дизеля

ИЗ более высокого значения коэффициента полезного действия – следует и топливная эффективность. Так, например двигатель 1,6 литра может расходовать по городу всего 3 – 5 литров, в отличие от бензинового типа, где расход 7 – 12 литров. У дизеля намного , сам двигатель зачастую компактнее и легче, а так же в последнее время и экологичнее. Все эти положительные моменты, достигаются благодаря большему значению , есть прямая зависимость КПД и сжатия, смотрим небольшую табличку.

Однако не смотря на все плюсы у него также много и минусов.

Как становится понятно, КПД двигателя внутреннего сгорания далек от идеала, поэтому будущее однозначно за электрическими вариантами – осталось только найти эффективные аккумуляторы, которые не боятся мороза и долго держат заряд.