Деформационные характеристики грунтов. Деформационные свойства дисперсных грунтов Показателем деформационных свойств грунта является

Прочность грунта определяет его способность удерживать строение в вертикальном положении. От прочностных характеристик зависит, насколько глубоким должен быть фундамент, насколько высоким может быть строение. Прочность грунтового основания обеспечивает вертикальное положение стен, отсутствие наклонов, трещин, просаживаний и других капитальных разрушений. Как определяются прочностные характеристики для грунтов? Какие приборы и методы используются для исследования качества грунтов перед капитальным строительством?

Как определяют прочность?

Для определения прочности любого материала его подвергают воздействию нагрузки и отслеживают наличие и размер деформаций после нагружения. В зависимости от деформационных свойств, материал может выдерживать определённую нагрузку без изменений размеров и формы или деформироваться под воздействием внешних сил.

Почва или грунт – это материалы, у которых есть определённая прочность и стойкость к деформациям. Плотная почва (глина) хорошо держит нагрузку и не деформируется. Сыпучий грунт (песок) нагрузки не выдерживает, сдвигается и вызывает разрушение стен строения. Кроме того, способность не деформироваться под нагрузкой зависит от состояния грунта (насыщенности водой, промерзания). Какие нагрузки должен выдерживать грунт под фундаментом здания?

Какие нагрузки выдерживает здание


Здание испытывают воздействие вертикальных нагрузок (давление атмосферы, снега, дождя) и горизонтальных нагрузок (давление ветра). Поэтому испытание на лабораторных приборах определяет способность образцов грунта выдерживать вертикальные и горизонтальные нагрузки. В ходе испытаний также определяется критическое значение, при котором образец грунта разрушается (сдвигается, получает значительную деформацию или рассыпается).

Среди прочностных характеристик грунтов наиболее важна стойкость к касательным (сдвигающим) деформациям (горизонтальным нагрузкам).

Лабораторные испытания прочности грунта

Для определения прочностных характеристик грунтов проводят лабораторные испытания грунтовых проб на специальных приборах. Способы и методы исследований определяются ГОСТом 12248-96.

Чаще испытание проводят на приборе, который прилагает усилие сдвига в одной плоскости. Такое исследование называют «методом одноплоскостного среза». Сначала к образцам грунта (не меньше 3-х) прикладывают горизонтальную сдвигающую нагрузку и наращивают её до разрушения образца. После, к трём другим образцам грунта прикладывают вертикальную нагрузку и также наращивают её до разрушения образца.

Медленное наращивание нагрузки увеличивается с шагом 0,1а (где «а» – атмосферное давление). Нагрузку наращивают до тех пор, пока образец не разрушится или пока его деформация (сдвиг) не превысит 5 мм.


Данные исследований заносят в график, где вдоль осей обозначают размер нагрузки (сдвигающего усилия) и величину сдвига. По данному графику определяют внутреннее трение грунта, удельное сопротивление срезу и его удельное сцепление.

Полученные показатели сравнивают с обозначенными допустимыми характеристиками грунтов, указанными в ГОСТе. После выносят рекомендации о возможности строительства здания на данном грунте.


Когда проводят исследование

Исследование прочностных характеристик грунтов проводится в ходе геолого-разведывательных работ перед строительством здания. Особенно это важно для высотных многоэтажных построек, которые имеют значительный вес и должны выдерживать большие ветровые нагрузки.

Забор грунта для испытаний на приборах называют монолитом. Его берут из шурфов – скважин, глубина которых равна глубине фундамента будущего дома. Пробу грунтов берут через каждые 1-2 м вдоль всей глубины шурфа. В качестве образцов для исследований берут пробы с неразрушенной внутренней структурой грунта (без перекапывания, рыхления и др.).

Испытания на приборах проводят на образцах в сухом и водонасыщенном (намокшем) состоянии, а также на предварительно уплотнённых образцах или без их предварительного уплотнения.

Геодезическая разведка. Так выглядит проба грунта

Приборы для определения прочности

Для лабораторных исследований используются следующие приборы:

  • Устройство компрессионного сжатия ГТ1.1.4 – измеряет деформируемость, просадочность почвы.
  • Установки трёхосного сжатия ГТ0.3.10., ГТ0.3.13., ГТ0.3.14.
  • Установки для одноплоскостного среза ГТ0.2.1., ГТ1.2.9.
  • Установка предварительного уплотнения образцов ГТ1.2.5. и прибор для уплотнения ГТ1.4.1
  • Установки одноосного сжатия ГТ0.5.3., ГТ0.5.4
  • Установки сжатия и растяжения для исследования скальных грунтов ГТ0.6.3., ГТ0.6.4.
  • Установка одноплоскостного среза для мёрзлого грунта ГТ0.2.2.
  • Приспособления для подготовки образцов.

С помощью лабораторных исследований определяют прочностные характеристики грунта.

Прочность грунтов: характеристики

Деформационные свойства почвы измеряются следующими показателями:

  • Прочность грунта – способность сопротивляться внешнему воздействию – оценивается пределом прочности на одноосное сжатие (максимальной нагрузкой, которую грунт выдерживает без разрушения). Измеряется в МПа.
  • Угол трения – зависит от вида грунта, для песчаников равен 25-45 единиц, для пылеватых глин – от 7 до 30 единиц. Также показателем прочностных характеристик грунта является коэффициент внутреннего трения.
  • Удельное сцепление – сопротивление удельных связей внутри грунта перемещению его частиц. Измеряется в кПа или кгс/см 2 .
  • Модуль деформации Е (характеристика жёсткости грунта) – коэффициент зависимости деформации от напряжения.

Характеристики прочности грунта могут изменяться в зависимости от времени года, водонасыщения, температуры.

Что влияет на прочность грунта?

Что влияет на деформационные характеристики грунтов:

  • Гранулометрический состав грунта (размер его частиц). Чем мельче частицы, тем выше плотность и ниже деформационные свойства.
  • Пористость почвы (чем плотнее почва, тем выше её прочностные характеристики и ниже способность деформироваться под нагрузкой).
  • Влажность грунта (намокание грунта снижает характеристики прочности).
  • Колебания подземных вод (подъём их уровня снижает прочностные свойства грунта).

Работа геодезистов – начало строительства

Определение деформационных свойств грунтов требует профессиональных знаний и геологических расчетов.

Прочностные и деформационные характеристики грунтов обновлено: Февраль 26, 2018 автором: zoomfund

Основными показателями механических свойств грунтов, определяющими несущую способность оснований, а также их деформацию, является угол внутреннего трения , удельное сцеплениеС , модуль деформации Е . Для определения механических свойств грунтов можно воспользоваться таблицами приложения 1 СНиП 2.02.01-83*. Для песчаных грунтов нормативные значении сцепления
(кПа), угла внутреннего трения(град.) и модуля деформацииЕ (МПа) (табл.1.2.1) определяют в зависимости от типа грунта и коэффициента пористости. Для пылевато-глинистых грунтов величины
,(табл.1.2.2) иЕ (табл.1.2.3) определяются в зависимости от типа грунта, показателя текучести и коэффициента пористости. Искомое нормативное значение показателя механических свойств грунта определяют, используя для этого в необходимых случаях линейную интерполяцию по коэффициенту пористости. Если значения е, грунтов выходят за пределы, предусмотренные в таблице, характеристики
,иЕ следует определять по данным непосредственных испытаний этих грунтов в полевых или лабораторных условиях. Допускается в запас надежности принимать характеристики
,иЕ по соответствующим нижним пределам е, , если грунты имеют значения величин е, меньше этих величин.

Таблица 1.2.1. – Извлечение из табл.1 прил.1 СНиП 2.02.01-83*. Нормативные значения удельного сцепления с n j n , град. и модуля деформацииЕ , МПа (кгс/см 2), песчаных грунтов четвертичных отложений

Песчаные грунты

Характеристика грунтов при коэффициенте пористости е , равном

Гравелистые и крупные

c n

j n

Средней крупности

c n

j n

c n

j n

Пылеватые

c n

j n

Таблица 1.2.2. – Извлечение из табл.2 прил.1 СНиП 2.02.01-83*.Нормативные значения удельного сцепления с n , кПа (кгс/см 2), угла внутреннего тренияj n , град. пылевато-глинистых нелессовых грунтов четвертичных отложений

Обозначения характеристик грунтов

Характеристики грунтов при коэффициенте пористости е , равном

0 £ I L £ 0,25

c n

j n

0,25 < I L £ 0,75

c n

j n

Суглинки

0 < I L £ 0,25

c n

j n

0,25 < I L £ 0,5

c n

j n

0,5 < I L £ 0,75

c n

j n

0 < I L £ 0,25

c n

j n

0,25 < I L £ 0,5

c n

j n

0,5 < I L £ 0,75

c n

j n

Таблица 1.2.3. Извлечение из табл.3 прил.1 СНиП 2.02.01-83*.Нормативные значения модуля деформации пылевато-глинистых нелессовых

Происхождение и возраст грунтов

Наименование грунтов и пределы нормативных значений их показателя текучести

Модуль деформации грунтов Е , МПа (кг/см 2), при коэффициенте пористости е , равным

Четвертичные отложения

Аллювиальные,

Делювиальные,

Озерно-аллювиальные

0 £ I L £ 0,75

Суглинки

0 £ I L £ 0,75

0,25 < I L £ 0,5

0,5 < I L £ 0,75

0 £ I L £ 0,75

0,25 < I L £ 0,5

0,5 < I L £ 0,75

Флювиоглянциальные

0 £ I L £ 0,75

Суглинки

0 £ I L £ 0,75

0,25 < I L £ 0,5

0,5 < I L £ 0,75

Моренные

Суглинки

I L £ 0,5

Юрские отложения оксфордского яруса

0,25 £I L £ 0

0 < I L £ 0,25

0,25 < I L £ 0,5

Исследования деформационных характеристик грунтов направлено на определение возможности удерживать без проседания и изменения целостности как части конструкции, так и всего строения. На стадии проекта изучение данных характеристик является основным, так как именно такие исследования определяют необходимый вид фундамента и его глубину. Также особенности устойчивости грунтов оказывают прямое влияние, насколько высоким может быть будущее строение.

Важность таких исследований очень велика. В случаях проведения некорректного исследования, полученные данные, могут привезти к нарушению целостности здания или его полному разрушению. Устойчивость к деформациям грунта напрямую оказывает влияние на наклон, появление трещин, просадки фундамента и других негативных явлений.

Определение несущей способности

Определение несущей способности грунта происходит через использование нагрузок и отслеживанием всех происходящих деформаций. Опытным путем устанавливается, какие будут получены результаты от нагрузок разной степени. Так определяется степень деформационных характеристик грунта при различных нагрузках. И определяется нагрузка, при которой никаких значительных деформаций не произошло.

В зависимости от вида грунта деформационные характеристики получаются различными. Так глина практически не имеет деформаций при различных нагрузках, в то время как, песок не выдерживает нагрузки и сдвигается. Такой сдвиг вызывает разрушение фундамента, стен, проседания одной ил нескольких сторон.

Сама прочность грунта имеет сильную зависимость от того, в каком состоянии она находиться (насыщенность влагой, температура и т.д.).

Сила воздействия

В проведении испытаний является значительным не только изучение степени переносимого напряжения от массы здания или конструкции. Значительными условиями для расчета являются силы, воздействующие на само здание. В период эксплуатации постоянно оказывают влияние такие дополнительные силы, как:

  • давление атмосферы;
  • дополнительная масса от осадков;
  • ветер.

На уровне лабораторных испытаний устанавливается максимальная и безопасная степень воздействия горизонтальных и вертикальных нагрузок. Так определяется несущая способность грунтов и уровень опасности, который следует предусмотреть на случай чрезвычайных последствий. Во время заключения по таким испытаниям главным показателям является устойчивость к сдвигающим деформациям, что и приводит к изменениям целостности и разрушениям.

Изучение образцов грунта

Для точного определения деформационные характеристики грунтов , проводятся специальные испытания. Проведение исследований регламентировано и имеет ряд определенных методов и оборудования, которое соответствует соответствующему ГОСТу № 12248-96.

Одним из основных регламентированных методов исследования является метод «одно плоскостного среза». Специальный прибор производит сдвиг одной части по отношению у другой. Так определяется главная характеристика деформации грунта.

Для проведения испытаний используется не меньше 3-х образцов грунта. Используемые образцы подвергаются сдвигающей силе, которая с каждым этапом нарастает и в конечном итоге приводит к деформации. В первоначальных этапах проверяется горизонтальная прочность перед сдвигами. На второй стадии такой же процесс с тремя образцами проводят для определения сдвигающей деформации по горизонтали.

Шаг изменения нагрузки происходит в 0,1 атмосферы. Процесс исследований прекращается при разрушении грунта или сдвига в полсантиметра.

Все лабораторные результаты заносятся в график, где и устанавливается удельное сцепление и сопротивление грунту.

Все полученные результаты опытных испытаний и средние расчетные сравниваются с установленным государственным стандартам для строения здания.

Период проведения исследований

Проведение исследований на деформационные характеристики обязано проходить на этапе изыскательных работ, на этапе проектирования будущей постройки. Проведение испытания несущей способности грунта обязательно для постройки любых зданий и сооружений, особенно важно для зданий с большим количеством этажей.

Забор проб производится специальным оборудованием с помощью шурфов. Шурф представляет собой забуренную скважину на глубину, откуда будет начинаться заливка фундамента. Проведение взятия проб грунта обязательно производится таким методом, так как при вскапывании происходи разрыхление и перемешивание. Взятие проб производят по всей длине шурфа через каждый метр. Для испытаний подходят только целостные пробы.

Сами исследования проводятся на грунте в различных состояниях: повышенной влажности, нагретом, минимального количества влаги, замершем, уплотненном, неуплотненном.

Основные расчеты несущей способности грунтовых пород

Деформация грунта определяется с помощью определенных значений:

  • прочность – противостояние воздействию извне. Измеряется максимальным пределом. За предел принимается максимально переносимое напряжение без нарушения целостности;
  • угол трения – каждый вид породы имеет свой угол трения;
  • сцепление – сила связей между частичками грунта;
  • модуль деформации – выражает через отношение деформации и напряжения.

Все характеристики имеют различные значения при определенных изменениях состояния грунта.

Влияние на деформации

На деформации грунта влияет несколько определенных факторов:

  • размер частиц грунта – чем меньше частицы, тем выше плотность;
  • пористость – чем больше расстояние частиц друг от друга, тем ниже прочность грунта;
  • влажность – повышенная влажность снижает предельное значение прочности;
  • подземные воды – наличие большого водного фронта и его сезонные колебания влияют на прочность грунта;
  • резкие погодные изменения – при цикличном и резком переходе от теплого состояния к более холодному (точнее 0 °С и ниже) может происходить сдвиг в определенных областях грунта.

Все факторы влияние обязаны быть приняты к сведенью в процессе определения основных рекомендаций по строительству и закладке фундамента под здание.

Виды грунта, подлежащие обязательному исследованию

В целом для обеспечения полной безопасности строительства и эксплуатации здания проведение исследований на деформации рекомендовано для всех видов грунта. Так можно определить возможные сложности, которые повлияют на эксплуатацию и строительство объекта. Проведение обязательных испытаний на деформации согласно государственного стандарта определено для:

  • крупнообломочных грунтов;
  • песков;
  • глинистых пород;
  • органоминеральных грунтов;
  • органических грунтов;
  • засоленных грунтов.

Данные виды грунта являются особо подверженными для деформаций своих несущих характеристик. Это связано с их особенностями проявления физических свойств при возникновении внешних факторов. Крупнообломочные и пески не имеют высокой прочности и для них характерен сдвиг под нагрузкой, а это мгновенно вызывает разрушение фундамента, проседание и перекос стен и как следствие полное разрушение. Также все перечисленные виды грунта особо подвержены изменению своих свойств при намокании. Все грунты имеют либо не высокую плотность, что при намокании приводит к провалам, либо в них присутствуют растворимые примеси. Именно поэтому точное определение деформационных характеристик грунтов данной категории является обязательным. После исследования разрабатывается список рекомендаций по устранению возможных проседаний и уплотнению грунта. Только основываясь на полноценное исследование, производится план мероприятий по предотвращению низких показателей прочности грунта.

Также обязательным является проведение данных испытаний для строительства высотных многоэтажных зданий, у которых повышенная нагрузка конструкции и увеличенная нагрузка горизонтального и вертикального воздействия. При неучтенных обстоятельствах с плотностью и несущей способностью грунта, фундамент может не соответствовать требуемой нагрузке. Такая ситуация может привести к обрушению или завалу здания на бок. Попытка сэкономить может привести не только к потере объекта, но и к потере человеческих жизней.

Наша работа

Компания «Геодата» предлагает исследование деформационных исследований грунта , а также весь спектр инженерно-геодезических изысканий на индивидуальных условиях. Благодаря большому опыту работы и крепким партнерским связям мы разработали гибкую систему цен, которые подойдут каждому. Работа выполняется только профессионалами свое дела, а в компанию приходят из лучших университетов страны.

Мы производим весь комплекс изысканий согласно установленным государственным стандартом с передачей всех необходимых заключений и документации во многих регионах страны.

Если у Вас есть к нам вопросы, просто свяжитесь с нами по указанному номеру или напишите на нашу электронную почту. Также Вы всегда можете заказать звонок с сайта, и наши специалисты проконсультируют Вас по всем интересующим вопросам.

СП 22.13330.2011
Актуализированная редакция СНиП 2.02.04-88
Автор НИИОСП им.Н.М.Герсеванова

Глава 5.3. п.:

  1. Основными параметрами механических свойств грунтов, определяющими несущую способность оснований и их деформации, являются прочностные и деформационные характеристики грунтов (угол внутреннего трения φ, удельное сцепление c , предел прочности на одноосное сжатие скальных грунтов R c , модуль деформации E и коэффициент поперечной деформации υ грунтов). Допускается применять другие параметры, характеризующие взаимодействие фундаментов с грунтом основания и установленные опытным путем (удельные силы пучения при промерзании, коэффициенты жесткости основания и пр.).
    Примечание - Далее, за исключением специально оговоренных случаев, под термином "характеристики грунтов" понимают не только механические, но и физические характеристики грунтов, а также упомянутые в настоящем пункте параметры.

СП 50-101-2004 "Проектирование и устройство оснований
и фундаментов зданий и сооружений"
Автор НИИОСП им. Н.М.Герсеванова, ГУП Мосгипронисельстрой

п.5.1.8
В состав физико-механических характеристик грунтов входят:

  • - плотность грунта и его частиц и влажность (ГОСТ 5180 и ГОСТ 30416);
  • - коэффициент пористости;
  • - гранулометрический состав для крупнообломочных грунтов и песков (ГОСТ 12536);
  • - влажность на границах пластичности и текучести, число пластичности и показатель текучести для глинистых грунтов (ГОСТ 5180);
  • - угол внутреннего трения, удельное сцепление и модуль деформации грунтов (ГОСТ 12248, ГОСТ 20276, ГОСТ 30416 и ГОСТ 30672);

    См. Нормативные значения этих характеристик - Приложение А СП 22.13330.2016

  • - временное сопротивление при одноосном сжатии, показатели размягчаемости и растворимости для скальных грунтов (ГОСТ 12248).
Для специфических грунтов, особенности проектирования оснований которых изложены в разделе 6, и при проектировании подземных сооружений (раздел 9) дополнительно должны быть определены характеристики, указанные в этих разделах. По специальному заданию дополнительно могут быть определены и другие необходимые для расчетов характеристики грунтов (например, реологические).
К физические характеристики грунтов относятся:
Для специфических грунтов, особенности проектирования оснований которых изложены в разделе 6 СП 22.13330.2011, и при проектировании оснований подземных частей сооружений (см. раздел 9) дополнительно должны быть определены характеристики, указанные в этих разделах.
К грунтам со специфическими неблагоприятными свойствами относятся:
    Просадочные грунты
    Набухающие грунты
    Засоленные грунты
    Органоминеральные и органические грунты
    Элювиальные грунты
    Насыпные грунты
    Намывные грунты
    Пучинистые грунты
    Закрепленные грунты
Определение свойств пучинистых грунтов см. на станице сайта "Пучинистые грунты Особенности проектирования "

При определении расчетного сопротивления грунта R оснований деревянных домов, относящихся к 3 пониженному классу ответственности , по табличным значениям R 0 (В.1-В.10 приложения В) не требуется определения таких физико-механических характеристик, как:

Угол внутреннего трения, удельное сцепление, модуль деформации и коэффициент поперечной деформации грунтов (ГОСТ 12248 , ГОСТ 20276 , ГОСТ 30416 и ГОСТ 30672);

См. пример определения свойств грунтов для замены фундамента на странице сайте: "Пример расчета основания деревянного дома "

Определения

Приложение А. п.:

  1. Коэффициент пористости e определяется по формуле (См. А.6 ГОСТ 25100-2011)

    e = (ρ s - ρ d)/ρ d , (А.5)

      ρ s -плотность частиц (скелета) грунта, масса единицы объема твердых (скелетных) частиц грунта г/см3;
      ρ d - плотность сухого грунта, отношение массы грунта за вычетом массы воды и льда в его порах к его первоначальному объему, г/см3, определяемая по формуле
  1. Плотность сухого грунта (скелета) ρ d определяют по формуле (см. А.16 ГОСТ 25100.2011)

    ρ d = ρ/(1+w ), (А.8)

      где ρ - плотность грунта, г/см 3 (см. ГОСТ 5180);
      w - естественная влажность грунта, %
  1. Показатель текучести I L - отношение разности влажностей, соответствующих двум состояниям грунта: естественному W и на границе раскатывания Wp, к числу пластичности Ip
    А.18 ГОСТ 25100-2011 , Показатель текучести I L д.е., - показатель состояния (консистенции) глинистых грунтов; определяют по формуле

    I L = (w - w p)/I p , (A.9)

      где w - естественная влажность грунта, % (см. ГОСТ-5180-84);
      w p - влажность на границе раскатывания, % (см. ГОСТ 5180);
      I p - число пластичности, %, (см. А.31 ГОСТ 25100-2011)
  1. Число пластичности I p (См. А.31 ГОСТ 25100-2011), %; определяют по формуле

    I p = w L - w p , (A.17)

      где w L - влажность на границе текучести, % (см. 4 ГОСТ 5180);
      w p - влажность на границе раскатывания, % (см. 5 ГОСТ 5180)

Сжимаемость - способность грунта уменьшаться в объеме под действием внешней силы, характеризуется коэффициентом сжимаемости m 0 (тангенсом угла наклона компрессионной кривой), определяемого по формуле (См. 5.4 ГОСТ 12248-2010)

m 0 = (e i - e i+1)/ (p i+1 - p i) 5.32

    e i и e i+1 - коэффициенты пористости, соответствующие давлениям p i и p i+1 .
Глава 5.1.6. п.:
  1. По измеренным в процессе испытания значениям горизонтальной срезающей и нормальной нагрузок вычисляют касательные и нормальные напряжения τ и σ, МПа, по формулам:

    τ = 10Q / A; (5.3)
    σ = 10F / A; (5.4)


  2. Удельное сцепление c и угол внутреннего трения φ грунта определяются как параметры линейной зависимости

    τ = σ tg(φ) + c (5.5)

      τ и φ определяются по формулам (5.3) и (5.4) = Q/A, (5.1) - касательные напряжения и
      = F/A, (5.2) - нормальные напряжения
      Q и F -соответственно касательная и нормальная сила к плоскости среза, кН
      A - пллощадь среза, см2
Модуль деформации по данным компрессионных испытаний E k - коэф. пропорциональности между давлением и относительной линейное общей деформацией грунта, возникающей под этим давлением, характеризующий остаточные и упругие деформации песков мелких и пылеватых, глинистых грунтов, органо-минеральных и органических грунтов, (См. 5.4 ГОСТ 12248-2010)

Источник: ГОСТ 12248-2010 плотность грунта ρ - отношение массы грунта включая массу воды в его порах к занимаемому этим грунтом объему (г/см 3 т/м 3)
плотность сухого грунта ρ d - отношение массы сухого грунта (исключая массу воды в его порах) к занимаемому этим грунтом объему (г/см 3 т/м 3)
плотность частиц грунта ρ s - отношение массы сухого грунта (исключая массу воды в его порах) к объему твердой части этого грунта (г/см 3 т/м 3). Полная влагоёмкость Wo – максимально возможное содержание в грунте всех возможных видов воды при полном заполнении его пор.

w sat = n.ρ w / ρ d

    где: n – пористость, д.е.,
    ρ w – плотность воды, г/см3,
    ρ d – плотность сухого грунта .
В табл. 9 приведены ориентировочные значения плотностей частиц грунтов ρ s не содержащих водорастворимых солей и органических веществ

В области линейного сжатия деформирование грунтов, как и любых других материалов, характеризуется модулем деформации Е и коэффициентом бокового расширения ν, называемым коэффициентом Пуассона. Под фундаментами боковое расширение грунта стеснено окружающим массивом и мало влияет на деформации основания. Основным показателем деформирования следует считать модуль деформации, который является эмпирическим коэффициентом в известной из сопротивления материалов формуле Гука. Для однородных материалов опытные величины Е имеют небольшой разброс и рассматриваются как константа. Сжимаемость грунтов в пределах слоя (ИГЭ) меняется в широком интервале. Поэтому их модули деформации определяют на каждой строительной площадке по результатам разных видов полевых , лабораторных испытаний, или по показателям физического состояния . Способ испытаний выбирается в зависимости от уровня ответственности проектируемого здания.

Полевые испытания грунтов принято проводить инвентарным штампом, являющимся моделью фундамента. Используемое в полевых условиях оборудование, измерительные приборы, порядок проведения испытаний и обработки результатов измерений описаны в ГОСТ 20276-99. Штамп 1 (рис. 3.1) устанавливается в котловане или горной выработке, плотно притирается к поверхности грунтового массива и загружается отдельными ступенями нагрузки гидравлическим домкратом 3, упирающимся в анкерную балку 5, соединенную с блоками 4, или штучными грузами. Ступени нагрузки принимаются в зависимости от вида и состояния грунта и выдерживаются до стабилизации осадки основания. Измерение осадки производится прогибомерами или, что удобнее, индикаторами 7, закрепленными на неподвижной основе 8. Конструкции установок для нагружения штампа и схемы измерения осадок могут быть и иными. По результатам испытаний строится график (рис.3.2), на горизонтальной оси которого указываются давления, а по вертикальной оси откладываются измеренные осадки штампа. Построенный по экспериментальным точкам эмпирическая кривая чаще представляет ломаную линию, которую в некотором интервале давлений ∆р, допуская небольшую погрешность, заменяют осредненной прямой, построенной методом наименьших квадратов или графическим методом. За начальные значения р g и s 0 (первая точка, включаемая в осреднение) принимают давление от собственного веса грунта на глубине установки штампа, и соответствующую ему осадку; а за конечные значения р к и s к - значения давления и осадки, соответствующие точке на прямолинейном участке графика. Количество включаемых в осреднение точек должно быть не менее трех. Модуль деформации грунта Е вычисляют для линейного участка графика по формуле



(3.1)

где v - коэффициент Пуассона, принимаемый равным 0,27 для крупнообломочных грунтов; 0,30 - для песков и супесей; 0,35 - для суглинков; 0,42 - для глин;

К 1 - коэффициент, принимаемый равным 0,79 для жесткого круглого штампа;

D – диаметр штампа.

Остальные обозначения указаны на рис. 3.2.

Согласно нормам проектирования СНиП 2.02.01-83* количество опытов для каждого выделенного инженерно-геологического элемента должно быть не менее 3. Модули деформации грунтов, вычисленные по формуле (3.1), являются наиболее достоверными. Недостаток метода в том, что затраты на испытания штампов относительно высоки.

Лабораторные испытания . В лабораторных условиях проводят испытания образцов грунта в приборах, обычно исключающих боковое расширение. Такой метод испытаний принято называть компрессионными сжатием , а конструкции приборов для испытаний компрессионными приборами или одометрами. Устройство одометра показано на рис 3.3, порядок испытаний изложен в ГОСТ 12248-96. Образец испытываемого грунта 11, заключенный в рабочее кольцо 3, устанавливается в приборе на перфорированный вкладыш 6. Сверху на него укладывается перфорированный металлический штамп 5, предназначенный для равномерного распределения силы N , передаваемой на образец с помощью специального нагрузочного устройства. Под действием давления, увеличивающегося ступенями по 0.0125 МПа и более, штамп вследствие сжатия образца оседает. Его перемещение, продолжающееся довольно продолжительное время, измеряется двумя индикаторами 8 с точностью до 0.01 мм. При сжатии образца объёма пор грунта уменьшается и из них выдавливается вода, которая отводится через отверстия в штампе и вкладыше.

Уплотнение грунта принято характеризовать уменьшением коэффициента пористости. Первоначальное значение коэффициента пористости е о определяется по формуле, приведенной в табл. 1.3. На каждой ступени нагрузки коэффициент пористости вычисляется по формуле

е i = е 0 - (1+ е 0 ) (3.2)

где s i – величина измеренного перемещения (осадки) штампа при давлении р i ;

h – высота образца грунта.

Изменения коэффициента в зависимости от давления показано на рис. 3.4. Экспериментальные точки на графике соединяются прямыми отрезками. Построенная эмпирическая зависимость в общем случае представляет ломаную линию, которую принято называть компрессионная кривая . Для интервала давлений от р н до р к , принимаемых из таких же соображений, как и для штамповых испытаний, участок компрессионной кривой заменяется прямой. Такая замена позволяет вычислить параметр деформативности, называемый коэффициент сжимаемости т 0:

т 0 = (3.3)

По смыслу коэффициент сжимаемости есть тангенс угла наклона осредненной прямой к горизонтальной оси.

Модуль деформации определяется по коэффициенту сжимаемости из выражения:

Е к = (3.4)

где β – коэффициент, зависящий от коэффициента бокового расширения ν, вычисляется по формуле

где v - коэффициент поперечной деформации, принимаемый равным: 0,30-0,35 - для песков и супесей; 0,35-0,37 - для суглинков; 0,2¾0,3 при I L < 0; 0,3¾0,38 при 0 £ I L £ 0,25; 0,38¾0,45 при 0,25 < I L £ 1,0 - для глин (меньшие значения v принимают при большей плотности грунта).

Поскольку грунты неоднородны, то модули деформации грунтовых слоев находят как среднее из результатов не менее 6 опытов.

По ряду причин величины Е к оказываются значительно заниженными. Для зданий I и II уровней ответственности значения модуля деформации, устанавливаемые по результатам компрессионных испытаний, определяют по формуле

Е= т к Е к (3.6)

Эмпирический коэффициент т к находят путем сопоставления полевых испытаний штампов с лабораторными испытаниями.

т к = (3.7)

Значения т к для грунтов разного вида и состояния варьируют в широком интервале. Их ориентировочные значения на практике принимают из табл. 5.1 свода правил по проектированию и устройству фундаментов СП 50-101-1004, или по таблицам, составленным для грунтовых условий отдельных регионов.

Образцы грунта можно испытывать в лабораторных условиях по более сложной схеме трехосного сжатия. Порядок испытания изложен в ГОСТ 12248-96. Такие испытания позволяют устанавливать не только модуль деформации, но и прочностные характеристики, описанные в гл. 5. В практике трехосные испытания не находят широкого применения. Трудности при их проведении возрастают, а получаемые величины модуля деформации нужно корректировать, как и при компрессионных испытаниях.

Много данных о грунтах природного залегания позволяет получать испытания статическим зондированием по ГОСТ 19912-2001. Современные зонды состоят из муфты трения и наконечника (конуса). Зондирование ведут вдавливанием в грунтовый массив зонда с одновременным измерением непрерывно или через 0,2 м сопротивлений f s и q c (рис. 3.5), которые могут записываться на магнитный диск и обрабатываться на компьютере.Вместе с бурением и другими видами испытаний статическое зондирование позволяет более достоверно решать многие задачи. В их число входят следующие вопросы:

выделение инженерно-геологических элементов (ИГЭ) и установление их границ;

оценка пространственной изменчивости состава и свойств грунтов;

количественная оценка характеристик физико-механических свойств грунтов.

Количественная оценка модуля деформации и других показателей физико-механических свойств грунтов производится на основе обоснованных статистических зависимостей между ними и показателями сопротивления грунта внедрению зонда. Обычно используется зависимость вида Е=f (q c ). Параметры такой зависимости целесообразно устанавливать для региональных видов грунтов. При их наличии статическое зондирование позволяет значительно снижать затраты на испытания грунтов.

Для нахождения модуля деформации продолжает использоваться проём, основанный на его связи с показателями физического состояния. Связь носит вероятностный характер. Однако на её основе составлены таблицы, из которых модуль деформации принимается для глинистых грунтов различного происхождения по показателю текучести I L и коэффициенту пористости е . Для сыпучих грунтов модуль деформации берется по гранулометрическому составу и коэффициенту пористости е . Таблицы приведены в нормах проектирования, сводах правил, в справочниках, и носят рекомендательный характер. Пользоваться ими допускается только для предварительных расчетов.

Вопросы для самопроверки.

1 Какими показателями характеризуется деформирование грунтов в области линейного сжатия?

2. Что означает по смыслу модуль деформации грунта?

3. Какие испытания проводят для определения модуля деформации?

4. Сколько испытаний штампов необходимо провести для определения модуля деформации однородного слоя (ИГЭ)?

5. Сколько следует провести компрессионных испытаний для определения модуля деформации ИГЭ?

6. Как корректируют результаты компрессионных испытаний грунтов?

7. Сущность статического зондирования грунтов.

8. Можно ли принимать модуль деформации грунтов по показателям физического состояния?


ТЕМА 4

Расчет осадки основания .

Расчет осадки фундамента в инженерной практике производится на основе решения Гука для определения укорочения или растяжения упругого стержня, нагруженного осевой силой.

При приложении силы N укорочение стержня (рис. 4.1 а ), как следует из теории Гука, вычисляется из выражения

s = N L / А Е .

Если принять, что σ=N / А (А – площадь поперечного сечения стержня), то

s = σ L / Е . (4.1)

Произведение σL в этой формуле имеет простой геометрический смысл, означая, по сути, площадь прямоугольной эпюры напряжений.

По аналогии со стержнем осадка фундамента s (рис. 4.1 б ) понимается как укорочение некоторого условно выделяемого под подошвой столба грунта высотой Н ос . Вычисление его величины s по формуле (4.1) осложняется следующими обстоятельствами: напряжения σ z по горизонтальным сечениям и по высоте столба распределяются неравномерно (эпюры напряжений по ним криволинейны); высоту столба Н ос , поскольку её не измерить, нужно отыскивать каким-либо способом; в пределах Н ос могут находиться слои различной сжимаемости. Перечисленные проблемы приближенно решены в инженерном расчете осадки методом послойного суммирования.

Суть метода заключается в том, что осадку основания s вычисляют на основе формулы (4.1) как сумму деформаций однородных по сжимаемости участков, на которые разделяют грунтовый массив от подошвы до нижней границы сжимаемой толщи. Такой прием аналогичен известному способу приближенного определения площадей криволинейных фигур.

Расчет производится в следующей последовательности.

· Определяют давление на уровне подошвы фундаментов от собственного веса грунта:

σ zg = g 1 d 1 (4.2)

· Определяют дополнительное давление от нагрузки на фундамент, возникшее под подошвой сверх давления от собственного веса грунта:

р о = р н σ zg (4.3)

· Грунтовый массив под подошвой условно разделяют на однородные по сжимаемости участки (рис. 4.2) толщиной h i £ 0.4b . Если в пределах элементарного участка оказывается граница между грунтовыми слоями, то участок делят по ней на две части (на рисунке точка 2 взята на границе между ИГЭ 1 и ИГЭ 2).

·В точках на границах участков вычисляют дополнительные напряжения

σ zi = a р о , (4.4)

где a - коэффициент, принимаемый по табл. 2.3 в зависимости от соотношения сторон подошвы h =l/b и относительной глубины нахождения точки ξ =2z i /b (z i –расстояние от подошвы фундамента до рассматриваемой точки, i – номер точки), и напряжения от собственного веса грунта

σ zqi = σ zg +∑h i g i . (4.5)

· Отыскивают положение границы уплотняемой толщи, проверяя эмпирическое условие

σ zi k σ zqi , (4.6)

где k =0.2 при модуле деформации Е ≥5 МПа, и k =0.1 при Е< 5 МПа.

Расхождение между правой и левой частями условия допускается не более 5 кПа.

· По вычисленным в точках значениям напряжений строят эпюру напряжений (рис. 4.3) и подсчитывают средние давления σ z с i для всех участков в пределах сжимаемой толщи

σ z с i = (σ z (i -1) + σ zi )/2, (4.7)

где σ z (i -1) и σ zi – давления на верхней и нижней границе i -го участка.

· Вычисляют осадку фундамента как сумму деформаций элементарных участков в пределах от подошвы до границы сжимаемой толщи

s = 0.8åσ z с i h i / Е i . (4.8)

В этой формуле сумма произведений åσ z с i h i означает приближенную площадь криволинейной эпюры напряжений.

Исходные данные о глубине заложения и размерах подошвы фундаментов, необходимые для выполнения расчетов, указаны в табл. 4.1.

Таблица 4.1

Данные о фундаментах Номер варианта
Глубина заложения d 1 , м 1.5 2.8 2.1 2.4 1.8 2.5 3.3 2.9 2.3 3.1 2.2
Давление, кПа
ширина b м 1.6 2.4 2.1 2.7 1.8 1.5 2.3 1.6 1.9 2.2 2.9 3.2
длина l , м 2.4 2.7 3.3 2.4 2.1 3.4 3.2 2.8 4.1 4.5 4.2
Ширина b м 1.6 2.4 2.1 2.7 1.8 1.5 2.3 1.6 1.9 2.2 2.9 3.2
Данные о фундаментах Номер варианта
Глубина заложения d 1 , м 3.1 2.2 2.5 3.3 2.9 2.3 3.1 2.2 1.5 2.8 2.1 2.4
Давление, кПа
Размеры подошвы отдельного фундамента, м
ширина b м 2.5 3.3 2.9 1.5 2.8 2.1 2.3 3.1 2.2 2.7 1.8 1.5
длина l , м 3.3 4.2 2.4 3,6 2.7 3.3 2.4 4.5 4.5 4.1 1.8 2.1
Размеры ленточного фундамента
Ширина b м 2.5 3.3 2.9 1.5 2.8 2.1 2.3 3.1 2.2 2.7 1.8 1.5

Залегание, номера грунтовых слоев (ИГЭ), значения показателей ИГЭ принимаются для заданного варианта по рис. 1, табл. 1 и табл.2.

Указанные в таблице 4.1 давления на грунт относятся к отдельным и ленточным фундаментам.

При самостоятельном изучении темы следует выполнить расчеты осадки отдельного и ленточного фундаментов .

Пример 4.1 .

b = 1,8 м, l = 2,5 м, d 1 = 1,8 м, р н = 240 кПа. Сведения о грунтах приведены на рис.4.3.

Бытовое давление на отметке заложения фундамента

σ zg = g 1 d 1 = 19*1,8 = 34,2 кПа .

Дополнительное давление под подошвой фундамента

р о = р н σ zg = 240 – 34,2 = 205,8 кПа .

Толщина элементарного слоя

h=0.4b =0,4 *1,8 = 0,72 м .

Отношение сторон подошвы фундамента

h = l/b =2,5 / 1,8 = 1,39 ≈1,4.

1-я точка (i = 1) , z 1 = 0,72 м ;

x =2z 1 /b = 2 *0,72 /1,8 = 0,8, a= 0,848 ;

σ z 1 =a р о = 0.848 *205.8 = 174.5 кПа.

σ z с1 = (205,8 + 174.5) / 2 = 190,15 кПа;

Напряжения от собственного веса грунта

σ zq 1 = σ zg +h 1 g 1 .= 34,2 + 0,72 *19 = 47,88 кПа.

2-я точка (i = 2). Если эту точку взять на 0,72 м ниже, она окажется во 2-м слое. Поскольку участок должен быть однородным по сжимаемости, то точку следует расположить на границе между слоями. Следовательно, расстояние от подошвы до точки будет z 2 =1,05 м, а толщина второго участка составит

h 2 = 1.05 – 072 = 0,33 м:

x = 2 *1,05 / 1,8 = 1,17 , a=0,694 ,

σ z 2 = 0,694 *205,8 = 142,8 кПа ,

σ z с2 = (174.5 + 142,8)/2=158,6 кПа ,

σ zq 2 = 47,88 + 0,33 *19 = 54,15 кПа .

3-я точка (i = 3). В целях удобства пользования таблицей, чтобы избежать интерполирования при нахождении из неё значений a, примем z 3 =1,44 м. Толщина третьего участка составит h 3 = 1.44 – 1.05 = 0,39 м.

x = 2*1,44/ 1,8 =1,6; a=0,532 ;

σ z 3 = 0,532 *205,8 = 109,5 кПа;

σ z с3 =(142,8+109,5)/2 = 126,1 кПа;

σ zq 3 =54,15+0,39 *20,3 = 62,1 кПа.

4-я точка (i = 4). Толщина участка 0,72 м , z = 2,16 м.

x = 2 *2,16 / 1,8 = 2,4 ; a=0,325;

σ z 4= 0,325 *205,8 = 66,9 кПа;

σ z с4 =(109,5 + 66,9)/2 = 88,2;

σ zq 4 = 62,1+ 0,72 *20,3 = 76,7 кПа .

Для точек, расположенных ниже, напряжения подсчитываются аналогичным образом. Результаты всех проделанных вычислений приведены в табл. 4.2.

В 7-ой точке левая и правая части условия σ zi ≈0,2σ zqi (в таблице выделены серым цветом) отличаются на 2,39 кПа, менее чем на 5 кПа. Следовательно, границу уплотняемой зоны можно принять в этой точке на глубине 4,32 м от подошвы фундамента. Грунты в пределах этой глубины и являются основанием.

Таблица 4.2

Номер точки Номер слоя Z в м h i в м x=2z/b a σ zi в кПа σ zс i в кПа σ zq в кПа 0,2σ zq в кПа
1,000 205,8 34,2 -
0,72 0,72 0,8 0,848 174,5 190,1 47,88 9,6
1,05 0,33 1,17 0,694 142,8 158,6 54,15 10,83
1,44 0,39 1,6 0,532 109,5 126,1 62,1 12,42
2,16 0,72 2,4 0,325 66,9 88,2 76,7 15,34
2,88 0,72 3,2 0,21 43,22 55,06 91,3 18,26
3,6 0,72 4,0 0,145 29,8 36,51 105,9 21,18
4,32 0,72 4,8 0,105 21,61 25,7 120,0 24,0

Осадка равна

ѕ=0,8[(190,1 *0,72+158,6 *0,33)/7200+(126,1 *0,39+88,2 *0,72+55,06 *0,72+36,51 *0,72)/12000 ++25,7 *0,72/16000] = 0,034 м .=3,4 см .

Осадка ленточного фундамента рассчитывается в такой же последовательности. При одинаковом давлении на грунт и одинаковой ширине подошвы вычисленные осадки оказываются разными. Для выяснения причины этого сравнить эпюры напряжений.

Заключение .

Не следует упускать из виду, что выделяемый под фундаментами грунтовый столб представляет собой модель основания, деформации которой устанавливаются на основе гипотез о распределении напряжений в грунтовом массиве, расположении границы деформируемой зоны, сжимаемости грунтов. Из-за принятых упрощений параметры модели, используемые в расчетах, отличаются от параметров реального грунта. В итоге вычисленные осадки на практике обычно не совпадают с фактическими осадками фундаментов. Расчеты осадки по методу послойного суммирования, поэтому, являются приближенными.

Метод послойного суммирования, используя метод угловых точек определения напряжений, можно применять при определении осадки соседних фундаментов.

Нужно отметить, что осадки фундаментов возникают не сразу после приложения нагрузки, а медленно увеличиваются во времени. Продолжительность деформирования грунтов можно приближенно рассчитывать или принимать из наблюдений.

Вопросы для самопроверки.

1. Какое решение взято в основу расчета осадки?

2. Какие сложности возникают при расчетах осадки фундаментов?

3. В какой последовательности ведется расчет осадки?

4. Как определяется положение границы уплотняемой зоны?

5. Как учитывается различная сжимаемость грунтов основания?

6. Какова достоверность метода послойного суммирования?