Ультразвуковой контроль труб. Методика контроля состояния труб и сварных соединений. Анализ сварных швов

). Расширенный перечень нормативов касающихся УЗ ПЭП приведен в конце данной страницы. УЗ ПЭП можно условно классифицировать по следующим признакам:

По углу ввода колебаний различают:

  • Прямые преобразователи вводят и (или) принимают колебания по нормали к поверхности объекта контроля в точке ввода.
  • Наклонные преобразователи вводят и (или) принимают колебания в направлениях отличных от нормали к поверхности объекта контроля.

По способу размещения функций излучения и приема УЗ сигнала различают:

  • Совмещенные ПЭП где один и тот же пьезоэлемент, работает как в режиме излучения так и в режиме приема.
  • Раздельно-совмещенные преобразователи где в одном корпусе размещены два и более пьезоэлемента, один из которых работает только в режиме излучения, а другие в режиме приема.

По частоте колебаний

  • Высокочастотные УЗ ПЭП условно можно ограничить диапазоном 4-5 МГц, такую частоту обычно применяют при контроле мелкозернистых заготовок небольшой толщины (обычно менее 100мм) и сварных соединений толщиной менее 20мм.
  • Среднечастотные УЗ ПЭП с диапазоном частот 1,8-2,5 МГц. Преобразователи с данным диапазоном частот применяются для контроля изделий большей толщины и с большим размером частиц.
  • Низкочастотные УЗ ПЭП с диапазоном частот 0,5-1,8 МГц, используются для контроля заготовок с крупнозернистой структурой и высоким коэффициентом затухания, например чугуна, бетона или пластика.

По способу акустического контакта

  • Контактные ПЭП где рабочая поверхность соприкасается с поверхностью ОК или находится от нее на расстоянии менее половины длины волны в контактной жидкости .
  • Иммерсионные которые работают при наличии между поверхностями преобразователя и ОК слоя жидкости толщиной больше пространственной протяженности акустического импульса.

По типу волны возбуждаемой в объекте контроля:

  • Продольные волны - колебания которых происходит вдоль оси распространения;
  • Сдвиговые (поперечные) волны - колебания которых происходит перпендикулярно оси распространения;
  • Поверхностные волны (волны Реллея) - распространяющиеся вдоль свободной (или слабонагруженной) границы твердого тела и быстро затухающие с глубиной.
  • Нормальные ультразвуковые волны (волны Лэмба) – ультразвуковые волны, которые распространяются в пластинах и стержнях. Существуют симметричные и антисимметричные волны.
  • Головные волны – савокупность акустических волн возбуждаемых при падении пучка продольных волн на границу раздела 2 твердых сред под первым критически углом.

Смотрите так же статьи:

  • Преобразователи для контроля дифракционно-временным методом TOFD

Выбор ультразвукового пьезоэлектрического преобразователя

Выбор преобразователя, зависит от параметров контролируемого объекта, таких как материал, толщина, форма и ориентация дефектов и т.д.

Выбор ПЭП по углу ввода (прямой или наклонный) выбирают исходя из схемы прозвучивания конкретного объекта. Схемы прозвучивания содержатся в государственных и ведомственных стандартах , а так же технологических картах контроля . В общем случае угол ввода выбирают таким образом, что бы обеспечивалось пересечение проверяемого сечения акустической осью преобразователя (прямым или однократно отраженным лучем). Выявление дефектов выходящих на поверхность наиболее эффективно обеспечивается при падении поперечной волны под углом 45 °±5° к этой поверхности.

Выбор ПЭП по схеме включения (совмещенный или РС) выбирается в зависимости от толщины изделия или расстояния зоны контроля от поверхности ввода. Прямые совмещенные ПЭП обычно применяют при контроле изделий толщиной более 50мм, а прямые РС ПЭП для контроля изделий толщиной до 50мм включительно, или приповерхностного слоя до 50мм.

Наклонные РС ПЭП в основном используются по совмещенной схеме включения. Наклонные РС ПЭП с поперечной волной используют преимущественно для контроля сварных соединений тонкостенных (до 9мм) труб диаметром не более 400мм (хордовые преобразователи). Наклонные РС ПЭП с продольной волной применяют для контроля соединений с крупнозернистой структурой и высоким уровнем шумов (аустенитные швы).

Выбор ПЭП по частоте колебаний , выбирается в основном исходя из толщины ОК и требуемой чувствительности контроля. Благодаря более короткой волне, высокочастотные преобразователи позволяют находить дефекты меньшего размера, тогда как УЗ волны низкочастотных ПЭП глубже проникают в материал, т.к. коэффициент затухания уменьшается с частотой. Низкочастотные ПЭП применяются при контроле крупнозернистых материалов и материалов с высоким коэффициентом затухания.

При выборе частоты надо учитывать, что ее увеличение вызывает:

  • увеличение ближней зоны
  • уменьшение мертвой зоны, связанное с уменьшением длительности свободных колебаний пьезоэлемента;
  • улучшение лучевой и фронтальной разрешающей способности;
  • сужение характеристики направленности;
  • увеличение коэффициента затухания и связанное с ним падение чувствительности на больших толщинах
  • увеличение уровня структурных шумов в крупнозернистых материалах; уменьшение уровня собственных шумов ПЭП, связанное с увеличением затухания звуковой волны в элементах ПЭП при возрастании частоты;


Подпишитесь на наш канал You Tube

П111 - Прямые совмещенные преобразователи

Преобразователи типа П111 используются для дефектоскопии и толщинометрии изделий продольными волнами. На практике, прямые совмещенные преобразователи применяются для контроля листов, плит, валов, отливок, поковок, а также для поиска локальных утонений в стенках изделий. Преобразователи П111 используются для выявления объемных и плоскостных дефектов – пор, волосовин, расслоений и т.д. Характеристики ПЭП типа П111 приведены в таблице:

Обозначение УЗ ПЭП Эффективная частота, МГц Диаметр отражателя, мм Диаметр рабочей поверхности, мм Габаритные размеры, мм
П111-1,25-К20 1,25 ± 0,125 15 - 180 3,2 22 Ø 32х43
П111-2,5-К12 2,5 ± 0,25 10 - 180 1,6 14 Ø 22х35
П111-2,5-К20 2,5 ± 0,25 25 - 400 1,6 22 Ø 32х43
П111-5-К6 5,0 ± 0,5 5 - 70 1,2 9 Ø 19х32
П111-5-К12 5,0 ± 0,5 15 - 200 1,2 14 Ø 22х35
П111-5-К20 5,0 ± 0,5 15 - 200 1,2 22 Ø 32х43
П111-10-К6 10,0 ± 1,0 5 - 30 1,0 9 Ø 19х32

П112 - прямые раздельно-совмещенные преобразователи

Контактные раздельно-совмещенные преобразователи , типа П112, как правило используются для применяются для определения остаточной толщины стенки изделий и для поиска дефектов, расположенных на относительно небольших глубинах под поверхностью. Толщина контролируемых П 112 объектов, как правило, находится в диапазоне от 1 до 30мм. Характеристики П112 приведены в таблице:

Обозначение УЗ ПЭП Эффективная частота, МГц Диапазон контроля по стали 40х13, мм Диаметр отражателя, мм Размеры рабочей поверхности, мм Габаритные размеры, мм
П112-2,5-12 2,5 ± 0,25 2 - 30 1,6 Ø 16 Ø 24 х 43
П112-5-6 5,0 ± 0,5 1 - 25 1,2 Ø 9 Ø 21 х 40
П112-5-12 5,0 ± 0,5 2 - 30 1,2 Ø 16 Ø 24 х 43
П112-5-3x4 5,0 ± 0,5 1 - 25 1,2 10 х 15 Ø 32 х 12 х 28

П121 наклонные совмещённые преобразователи

Наклонные преобразователи , типа П121, широко применяются в задачах контроля сварных соединений, листов, штамповок, поковок и других объектов. Преобразователи П121 позволяют выявлять трещины, объемные дефекты, такие как неметаллические включения, поры, непровары, усадочные раковины и т.п. С помощью преобразователей типа П121, как правило, определяются характеристики вертикально ориентированных дефектов. Характеристики и возможная маркировка П 121 одного из производителей приведены в таблице:


Условное обозначение Угол ввода по образцу СО-2, град Диапазон контроля по стали, мм Эффективная частота, МГц Стрела, мм Размер ПЭ, мм Размер рабочей поверхности, мм Габаритные размеры, мм
П121-1,8-40-М-002 40+-1,5 1…50 1,8+-0,18 9 8х10 24х12 33х16х25
П121-1,8-50-М-002 50+-1,5 1…50 1,8+-0,18 10 8х12 30х16 33х16х25
П121-1,8-65-М-002 65+-1,5 1…45 1,8+-0,18 12 8х12 32х16 33х16х24
П121-2,5-40-М-002 40+-1,5 0,7…50 2,5+-0,25 8 8х12 30х16 33х16х25
П121-2,5-45-М-002 45+-1,5 0,7…50 2,5+-0,25 8 8х12 30х16 33х16х25
П121-2,5-50-М-002 50+-1,5 0,7…50 2,5+-0,25 8 8х12 30х16 33х16х25
П121-2,5-65-М-002 65+-2 0,7…45 2,5+-0,25 10 8х12 32х16 33х16х25
П121-2,5-70-М-002 70+-2 0,7…35 5+-0,5 12 8х12 32х16 33х16х25
П121-5-40-М-002 40+-1,5 0,7…50 5+-0,5 5 5х5 20х16 20х16х16
П121-5-45-М-002 45+-1,5 0,7…50 5+-0,5 5 5х5 20х16 20х16х16
П121-5-50-М-002 50+-1,5 0,7…50 5+-0,5 5 5х5 20х16 20х16х16
П121-5-65-М-002 65+-2 0,7…40 5+-0,5 6 5х5 20х16 20х16х16
П121-5-70-М-002 70+-2 0,5…25 5+-0,5 7 5х5 20х16 20х16х16

П122 – наклонные раздельно-совмещенные преобразователи

Хордовые преобразователи типа П122 в основном применяют для контроля кольцевых сварных швов трубных элементов из сталей и полиэтилена диаметром от 14 до 219 мм. с толщиной стенки от 2 до 6 мм., используются контактные раздельно-совмещенные хордовые преобразователи. Применение преобразователей хордового типа особенно эффективно для контроля тонкостенных сварных швов от 2 до 4 мм.

Преобразователи типа П122 предназначены для контроля тонкостенных сварных швов, как правило из нержавеющих, малоуглеродистых сталей и сплавов алюминия Характерная особенность ПЭП – минимальная мертвая зона и фокусировка УЗ поля в определенном диапазоне толщин. Характеристики П 121 представлены в таблице:

Наименование Угол ввода Стрела Фокусное расстояние по оси Y (глубина) Фокусное расстояние по оси X УЗК сварных швов толщиной
П122-5,0-65-М 65 о 7 мм 9 мм 13 мм 7 - 12 мм
П122-5,0-70-М 70 о 7 мм 5 мм 10 мм 5 - 9 мм
П122-5,0-75-М 75 о 7 мм 4 мм 9 мм 4 - 8 мм
П122-8,0-65-М 65 о 5 мм 6 мм 9 мм 5 - 7 мм
П122-8,0-70-М 70 о 5 мм 4 мм 8 мм 3 - 5 мм
П122-8,0-75-М 75 о 5 мм 3 мм 7 мм 2 - 4 мм

Выбор по производителю

Не выбрано Компьютерная радиография DUERR NDT / DÜRR NDT АКС Синтез НДТ Proceq SA НПЦ Кропус Константа Центр МЕТ Bosello High Technology SaluTron® Messtechnik GmbH ЗИО "ПОЛАРИС" НПП «Промприбор» ЭЛИТЕСТ Промтест Bruker ТОЧПРИБОР FUTURE-TECH CORP. OXFORD Instruments Амкро Ньюком-НДТ Sonotron NDT YXLON International Array Corporation Raycraft General Electric Vidar systems corporation ООО «Арсенал НК» Echo Graphic НПП "Машпроект"

Дефектоскопия труб

11.10.2016

Дефектоскопия труб - одна из подкатегорий неразрушающего ультразвукового контроля , наряду с дефектоскопией основного металла и швов. Данный метод дефектоскопии - один из самых востребованных услуг для контроля нефте- и газопроводов во многих отраслях промышленности: химической, нефтегазовой, топливной, электроэнергетической и др.

В процессе длительной эксплуатации, равно как и в производстве, трубопроводы подвергаются внутреннему и внешнему воздействию, в ходе которых могут накапливаться различные дефекты (коррозионные повреждения, усталостные трещины, нарушения целостности металла, неметаллические включения, закаты, плены, раковины и др.). Очень важным является своевременное обнаружение таких дефектов до выхода трубопровода из строя. Еще более важным является возможность проведения диагностики без остановки или вывода системы из эксплуатации. Именно поэтому для дефектоскопии труб используются методы неразрушающего контроля, среди них магнитные (магнитной анизотропии, магнитной памяти металла, магнитной проницаемости), акустические (импульсные ультразвуковые, волн Лэмба, фазовые, акустической эмиссии), электрические и оптические (визуальные - эндоскопические, лазерные, голографические).

Такие методы применяются для выявления различных дефектов: нарушения герметичности, контроля напряженного состояния, контроля качества и состояния сварных соединений, контроля протечек и других параметров, ответственных за эксплуатационную надежность трубопроводов.

Среди методик проведения дефектоскопии трубопроводов можно выделить толщинометрию тела трубы и ультразвуковое исследование тела и концов трубы для выявления дефектов продольной и поперечной ориентации.

В сфере строительства используются трубы диаметром от 28 до 1420 мм с толщиной стенки от 3 до 30 мм. По дефектоскопичности весь диапазон диаметров труб можно условно разбить на три группы:

  1. 28...100 мм и Н = 3...7 мм
  2. 108...920 мм и Н= 4...25 мм
  3. 1020...1420 мм и Н= 12...30 мм

Проведенные специалистами МГТУ им. Н.Э. Баумана исследования показывают, что необходимо учитывать анизотропию упругих свойств материала при разработке методик ультразвукового контроля сварных стыков труб.

Особенности анизотропии трубной стали.

Предполагается, что скорости распространения поперечных волн не зависят от направления прозвучивания и постоянны по сечению стенки трубы. Но при ультразвуковом контроле сварных соединений магистральных газопроводов, выполненных из зарубежных и российских труб, выявлены значительный уровень акустических шумов, пропуск крупных корневых дефектов, а также неправильная оценка их координат.

Установлено, что при соблюдении оптимальных параметров контроля и соблюдении процедуры его проведения основной причиной пропуска дефекта является наличие заметной анизотропии упругих свойств основного материала, что оказывает влияние на скорость, затухание, отклонение от прямолинейности распространения ультразвукового пучка.

Прозвучив металл более чем 200 труб по схеме, представленной на рис. 1, выявлено, что среднеквадратичное отклонение скорости волны при данном направлении распространения и поляризации составляет 2 м/с (для поперечных волн). Отклонения скоростей от табличных на 100 м/с и более не случайны и связаны скорее всего с технологией производства проката и труб. Отклонения в таких масштабах значительно влияют на распространение поляризованных волн. Помимо описанной анизотропии, выявлена неоднородность скорости звука по толщине стенки трубы.

Рис. 1. Обозначения наплавлений в металле трубы: X, Y, Z.- направления распространения ультразвука: х. у.z:- направления поляризации; Y- направление проката: Z- перпендикуляр к плоскости трубы

Листовой прокат обладает слоистой текстурой, представляющей собой в волокна металла и неметаллических включений, вытянутые в процессе деформации. Неодинаковые по толщине зоны листа подвержены различным деформациям в результате воздействия на металл термомеханического цикла прокатки. Это ведет к тому, что на скорость звука дополнительно влияет глубина залегания прозвучиваемого слоя.

Контроль сварных швов труб различного диаметра.

Трубы диаметром 28...100 мм.

Сварные швы у труб диаметром от 28 до100 мм и высотой от 3 до 7 мм имеют такую особенность как образование провисаний внутри трубы, это при контроле прямым лучом приводит к появлению на экране дефектоскопа ложных эхо-сигналов, которые совпадают по времени с эхо-сигналами, отраженными от надкорневых дефектов, которые обнаруживаются однократно отраженным лучом. Так как эффективная ширина пучка соразмерна с толщиной стенки трубы, то отражатель обычно не удается найти по местоположению искателя относительно валика усиления. Также имеет место также наличие неконтролируемой зоны в центре шва из-за большой ширины валика шва. Все это ведет к тому, что вероятность обнаружения недопустимых объемных дефектов невелика (10-12%), но недопустимые плоскостнные дефекты определяются гораздо надежнее (~ 85 %). Главные параметры провисания (ширина, глубина и угол смыкания с поверхностью изделия) считаются случайными величинами для данного типоразмера труб; средние значения параметров составляют 6,5 мм; 2,7 мм и 56°30" соответственно.

Прокат ведет себя как неоднородная и анизотропная среда с достаточно сложными зависимостями скоростей упругих волн от направления прозвучивания и поляризации. Изменение скорости звука близко симметрично относительно середины сечения листа, причем вблизи этой середины скорость поперечной волны может значительно (до 10 %) уменьшаться относительно окружающих областей. Скорость поперечной волны в исследуемых объектах меняется в диапазоне 3070...3420 м/с. На глубине до 3 мм от поверхности проката вероятно незначительное (до 1 %) увеличение скорости поперечной волны.

Помехоустойчивость контроля значительно усиливается при использовании наклонных раздельно-совмещенных ПЭП типа РСН (рис. 2), названных хордовыми. Они были созданы в МГТУ им. Н.Э. Баумана. Особенность контроля состоит в том, что при выявлении дефектов не нужно поперечноге сканирование, оно нужно только по периметру трубы при прижатии к шву передней грани преобразователя.

Рис. 2. Наклонный хордовый РСН-ПЭП: 1- излучатель: 2 - приемник

Трубы диаметром 108...920 мм.

Трубы диаметром 108-920 мм и с Н в диапазоне 4-25 мм также совершают односторонней сваркой без обратной подварки. До последнего времени контроль над этими соединениями контролировались совмещенными ПЭП по методике, изложенной для труб диаметром 28-100 мм. Но известная методика контроля предполагает наличие существенно большой зоны совпадений (зоны неопределенности).Это ведет к незначительности достоверности оценки качества соединения. Совмещенные ПЭП обладают высоким уровнем реверберационных шумов, осложняющих расшифровку сигналов, и неравномерность чувствительности, которую не всегда получается компенсировать имеющимися средствами. Использование хордовых раздельно-совмещенных ПЭП для контроля данного типоразмера сварных соединений не эффективно в связи с тем, что из-за ограниченности значений углов ввода ультразвуковых колебаний с поверхности сварного соединения габариты преобразователей несоразмерно увеличиваются, увеличивается и площадь акустического контакта.

Созданные в МГТУ им. Н.Э. Баумана наклонные ПЭП с выравненной чувствительностью используются для контроля сварных стыков диаметром более 10 см. Выравнивание чувствительности добиваются выбором угла разворота 2 так, чтобы середина и верхняя часть шва прозвучивались центральным однократно отраженным лучом, а нижняя часть обследовалась прямыми периферийными лучами, падающими на дефект под углом Y, от центрального. На рис. 3. изображен график зависимости угла ввода поперечной волны от угла разворота и раскрытия диаграммы направленности Y. Здесь в ПЭП падающая и отраженная от дефекта волны горизонтально поляризованные (SН -волна).

Рис. 3. Изменение угла ввода альфа, в пределе половины угла раскрытия диаграммы направленности РСН-ПЭП в зависимости от угла разворота дельта.

Из графика видно, что при контроле изделий Н =25 мм неравномерность чувствительности РС-ПЭП может составлять до 5 дБ, а для совмещенного ПЭП она может достигнуть 25 дБ. РС-ПЭП обладает повышенным уровнем сигнала и имеет повышенную абсолютную чувствительность. РС-ПЭП четко выявляется зарубка площадью 0,5 мм2 при контроле сварного соединения толщиной 1 см как прямым, так и однократно отраженным лучом при отношении полезный сигнал/помеха 10 дБ. Процесс проведения контроля рассмотренными ПЭП аналогичен процедуре проведения совмещенным ПЭП.

Трубы диаметром 1020...1420 мм.

Для выполнения сварных стыков труб диаметром от 1020 и 1420 мм с Н в диапазоне от 12 до30 мм используют двустороннюю сварку или сварку с подваркой обратного валика шва. В швах, сделанных двусторонней сваркой чаще всего ложные сигналы от задней кромки валика усиления имеют меньшую помеху, чем в односторонних швах. Они меньше по амплитуде из-за более плавных очертаний валика и дальше по развертке. В связи с этим для дефектоскопии это наиболее удобный типоразмер труб. Но проведенные в МГТУ им. Н.Э. Баумана исследования показывают, что металл этих труб характеризуется наибольшей анизотропией. В целях минимизации влияния анизотропии на выявляемость дефектов лучше всего использовать ПЭП на частоту 2,5 МГц с углом призмы 45°, а не 50°, как советуется в большинстве нормативных документов на контроль подобных соединений. Более высокая достоверность контроля достигнута при применении ПЭП типа РСМ-Н12. Но в отличие от способа, изложенного для труб диаметром 28-100 мм, при контроле данных соединений нет зоны неопределенности. В остальном принцип контроля остается таким же. При применении РС-ПЭП настройку скорости развертки и чувствительности рекомендуется производить по вертикальному сверлению. Настройка скорости развертки и чувствительности наклонных совмещенных ПЭП должна производится по угловым отражателям соответствующего размера.

Осуществляя контроль сварных швов необходимо помнить что в околошовной зоне могут случаться расслоения металла, которые усложняют определение координат дефекта. Зону с найденным наклонным ПЭП дефектом необходимо проверить прямым ПЭП для уточнения особенностей дефекта и выявления истинного значения глубины дефекта.

В нефтехимической промышленности, атомной энергетике для производства трубопроводов, сосудов нашли широкое применение плакированные стали. В качестве плакировки внутренней стенки таких конструкций берутся аустенитные стали наносимые методом наплавки, прокатки или взрыва толщиной в 5-15 мм.

Метод контроля данных сварных соединений предуполагает оценку сплошности перлитной части сварного шва, в том числе и зоны сплавления с восстановительной антикоррозионной наплавкой. Сплошность тела самой наплавки контролю не подлежит.

Но из-за отличия акустических качеств основного металла и аустенйтной стали от границы раздела при узи контроле появляются эхо-сигналы, образующие помехи обнаружению таких дефектов, как отслоений плакировки и поднаплавочных трещин. Наличие плакировки значительно влияет на параметры акустического тракта ПЭП.

В связи с этим для проведения контроля толстостенных сварных швов плакированных трубопроводов стандартные технологические решения не дают должного результата.

Многолетний исследования ряда специалистов: В.Н. Радько, Н.П. Разыграева, В.Е. Белого, В.С. Гребенника и др позволили определить главные особенности акустического тракта, разработать рекомендации по оптимизации его параметров, создать технологию узи контроля сварных швов с аустенитной плакировкой.

В работах специалистов установлено, что при переотражении пучка ультразвуковых волн от границы перлит-аустенитная плакировка диаграмма направленности почти не именяется в ситуации плакировки прокаткой и значительно деформируется в случае осуществления плакировки наплавкой. Ее ширина резко возрастает, а в пределах главного лепестка появляются осцилляции в 15-20 дБ в зависимости от типа наплавки. Имеет место быть значительное смещение точки выхода отражения от границы плакировки пучка по сравнению с его геометрическими координатами и перемена скорости поперечных волн в переходной зоне.

С учетом этих особенностей технология контроля сварных соединений плакированных трубопроводов предполагает предварительное обязательное измерение толщины перлитной части.

Лучшего нахождения плоскостных дефектов (трещин и несплавлений) достигается при помощи применения ПЭП с углом ввода 45° и на частоты 4 МГц. Лучшая выявляемость вертикально ориентированных дефектов на угле ввода 45° по сравнению с углами 60 и 70° обусловлена тем, что при прозвучивании последними угол встречи пучка с дефектом близок к 3-му критическому, при котором коэффициент отражения поперечной волны является наименьшим.

На частоте 2 МГц при прозвучивании снаружи трубы эхо-сигналы от дефектов экранируются интенсивным и длительным сигналом шума. Помехоустойчивость ПЭП на частоту 4 МГц в среднем на 12 дБ выше, а значит полезный сигнал от дефекта, располагающегося в непосредственной близости от границы наплавки, станет лучше разрешаться на фоне помех.

При прозвучивании изнутри трубы через наплавку максимальная помехоустойчивость устанавливается при настройке ПЭП на частоту 2 МГц.

Метод контроля сварных швов трубопроводов с наплавкой регламентируется руководящим документом Госатомнадзора РФПНАЭГ-7-030-91.

В строительстве применяют трубы Ø от 28 до 1420 мм с толщиной стенки от 3 до 30 мм. Весь диапазон диаметров по дефектоскопичности условно можно разделить на 3 группы:

  1. Ø от 28 до 100 мм и Н от 3 до 7 мм
  2. Ø от 108 до 920 мм и Н от 4 до 25 мм
  3. Ø от 1020 до 1420 мм и Н от 12 до 30 мм

Согласно исследованиям, которые были проведены в МГТУ им. Н.Э. Баумана за последнее время, в процессе разработки методов ультразвукового контроля сварных соединений труб следует учитывать такой очень важный фактор, как анизотропию упругих характеристик материала труб.

Анизотропия трубной стали, ее особенности

Анизотропи́я - это различие свойств среды (к примеру, физических: теплопроводности, упругости, электропроводности и др.) в разных направлениях внутри данной среды.

В процессе УЗ-контроля сварных соединений магистральных газопроводов, собранных из труб отечественного и зарубежного производства, обнаружены пропуск серьезных корневых дефектов, неточная оценка их координат, существенный уровень акустических шумов.

Выяснилось, что при соблюдении оптимальных параметров контроля и во время его проведения главная причина пропуска дефекта - это наличие значительной анизотропии упругих свойств основного материала. Она влияет на скорость, затухание и отклонение от прямолинейности движения ультразвукового пучка.

Во время прозвучивания металла более 200 штук труб по схеме, изображенной на рис. 1, выяснилось, что среднеквадратичное отклонение скорости волны при таком направлении движения и поляризации равно 2 м/с (для поперечных волн). Отклонения скоростей от табличных величин на 100 м/с и более не являются случайными и связаны, вероятно, с технологией производства проката и труб. Такие отклонения оказывают сильное влияние на распространение поляризованных волн. Помимо указанной анизотропии, обнаружена также неоднородность скорости звука по толщине стенки трубы.

Рис. 1. Обозначения наплавлений в металле трубы: X, Y, Z.- направления распространения ультразвука: х. у.z:- направления поляризации; Y- направление проката: Z- перпендикуляр к плоскости трубы

Структура листового проката слоистая, представляющая собой вытянутые во время деформации волокна металла и прочих включений. Помимо того, из-за воздействия на металл термомеханического цикла прокатки, неравномерные по толщине участки листа подвергаются различным деформациям. Эти особенности становятся причиной того, что скорость звука дополнительно зависит от глубины нахождения прозвучиваемого слоя.

Особенности контроля сварных швов труб различного диаметра

Трубы Ø от 28 до 100 мм

Отличительной особенностью сварных швов труб Ø от 28 до 100 мм с Н от 3 до 7 мм является возникновение провисаний внутри трубы. Это становится причиной появления на экране дефектоскопа ложных эхо-сигналов от них во время контроля прямым лучом, которые совпадают по времени с эхо-сигналами, отраженными от надкорневых дефектов, найденных однократно отраженным лучом. В связи с тем, что эффективная ширина пучка сопоставима с толщиной стенки трубы, то отражатель крайне сложно идентифицировать по местонахождению искателя относительно валика усиления. В центре шва также имеется неконтролируемая зона по причине большой ширины валика шва. Все это является причиной низкой вероятности (10-12%) выявления недопустимых объемных дефектов, хотя недопустимые плоскостные дефекты обнаруживаются намного лучше (~ 85 %). Основные характеристики провисания - глубина, ширина и угол смыкания с поверхностью объекта - являются случайными величинами для этого типоразмера труб; средние значения равны соответственно 2,7 мм; 6,5 мм и 56°30".

Прокат себя ведет как анизотропная и неоднородная среда с довольно сложными зависимостями скоростей упругих волн от направления поляризации и прозвучивания. Скорость звука изменяется примерно симметрично по отношению к середине сечения листа, причем в районе этой середины скорость поперечной волны может сильно (до 10 %) уменьшаться по сравнению с окружающими областями. Скорость поперечной волны в контролируемых объектах изменяется в диапазоне от 3070 до 3420 м/с. На глубине до 3 мм от поверхности проката скорость поперечной волны может незначительно (до 1 %) увеличиться.

Помехоустойчивость контроля значительно повышается в случае использования наклонных раздельно-совмещенных ПЭП типа РСН (рис. 2), которые названы хордовыми. Они были сконструированы в МГТУ им. Н.Э. Баумана. Особенностью контроля является то, что во время поиска дефектов нет необходимости в поперечном сканировании. Оно выполняется только по периметру трубы в момент прижатия к шву передней грани преобразователя.

Рис. 2. Наклонный хордовый РСН-ПЭП: 1- излучатель: 2 - приемник

Трубы Ø от 108 до 920 мм

Трубы Ø от 108 до 920 мм с Н от 4 до 25 мм также соединяют односторонней сваркой без обратной подварки. До недавнего времени контроль данных соединений выполняли с помощью совмещенных ПЭП по методике, составленной для труб Ø от 28 до 100 мм. Но для такой методики контроля требуется наличие довольно большой зоны совпадений (зоны неопределенности). Это значительно снижает точность оценки качества соединения. Помимо того, совмещенные ПЭП характеризуются высоким уровнем реверберационных шумов, которые затрудняют расшифровку сигналов, а также неравномерностью чувствительности, которую не всегда могут компенсировать доступные средства. Использование хордовых раздельно-совмещенных ПЭП с целью контроля этого типоразмера сварных соединений нецелесообразно, поскольку по причине ограниченности величин углов ввода ультразвуковых колебаний с поверхности сварного соединения габариты преобразователей существенно увеличиваются, становится большей и площадь акустического контакта.

В МГТУ им. Н. Э. Баумана созданы наклонные ПЭП с выровненной чувствительностью для выполнения контроля сварных стыков Ø от 100 мм. Выравнивание чувствительности обеспечивает такой выбор угла разворота 2, чтобы верхняя часть и середина шва прозвучивались центральным один раз отраженным лучом, а нижняя часть - прямыми периферийными лучами, которые падают на дефект под углом Y, от центрального. На рис. 3. показан график зависимости угла введения поперечной волны от угла разворота и раскрытия диаграммы направленности Y. В таких ПЭП падающая и отраженная от дефекта волны являются горизонтально поляризованными (SН -волна).

Рис. 3. Изменение угла ввода альфа, в пределе половины угла раскрытия диаграммы направленности РСН-ПЭП в зависимости от угла разворота дельта.

Из графиков ясно, что во время выполнения контроля объектов с толщиной стенки 25 мм неравномерность чувствительности РС-ПЭП достигает 5 дБ, вместе с тем как для совмещенного ПЭП она может достичь 25 дБ. РС-ПЭП характеризуется повышенным уровнем сигнал – помеха и исходя из этого повышенной абсолютной чувствительностью. К примеру, РС-ПЭП без проблем выявляет дефект площадью 0,5 мм2 в процессе контроля сварного соединения толщиной 10 мм как прямым, так и один раз отраженным лучом при отношении полезный сигнал/помеха 10 дБ. Порядок выполнения контроля данными ПЭП такой же, как и совмещенным ПЭП.

Трубы Ø от 1020 до 1420 мм

Сварные стыки труб Ø от 1020 до 1420 мм с Н от 12 до 30 мм выполняют двусторонней сваркой либо с подваркой обратного валика шва. В швах, которые выполнены двусторонней сваркой, обычно, ложные сигналы от задней кромки валика усиления дают не такую большую помеху, как в односторонних швах. Их амплитуда не так велика по причине более плавных очертаний валика. Кроме того, они дальше по развертке. По этой причине, для проведения дефектоскопии это самый подходящий типоразмер труб. Но результаты исследований, проведенных в МГТУ им. Н. Э. Баумана, показывают, что металл данных труб отличается наибольшей анизотропией. Чтобы снизить влияние анизотропии на обнаружение дефектов следует использовать ПЭП на частоту 2,5 МГц с углом призмы 45°, а не 50°, как указано в большинстве нормативных документов. Самую высокую точность контроля удалось получить при использовании ПЭП типа РСМ-Н12. В отличие от методики, составленной для труб Ø от 28 до 100 мм, при контроле данных соединений отсутствует зона неопределенности. В остальном способ контроля аналогичен. При использовании РС-ПЭП настройку скорости и чувствительности развертки также рекомендуется выполнять по вертикальному сверлению. Настройку скорости и чувствительности развертки наклонных совмещенных ПЭП следует производить по угловым отражателям соответствующего размера.

В процессе контроля сварных швов необходимо помнить, что в околошовной зоне бывают расслоения металла, которые затрудняют определение координат дефекта. Зону, в которой найден дефект наклонным ПЭП, необходимо дополнительно проконтролировать прямым ПЭП с целью уточнения характера дефекта и выявления точного значения глубины дефекта.

В атомной, нефтехимической промышленности и атомной энергетике при изготовлении трубопроводов, аппаратов и сосудов часто используют плакированные стали. Для плакировки внутренней стенки данных конструкций используют аустенитные стали, которые наносят методом наплавки, прокатки либо взрыва слоем от 5 до 15 мм.

Процесс контроля данных сварных соединений предусматривает анализ сплошности перлитной части сварного шва, а также зоны сплавления с восстановительной антикоррозионной наплавкой. При этом сплошность тела самой наплавки не контролируется.

Но по причине отличия акустических характеристик основного металла и аустенитной стали, от границы раздела во время проведения ультразвукового контроля появляются эхо-сигналы, препятствующие обнаружению дефектов, к примеру, отслоений плакировки и поднаплавочных трещин. К тому же, наличие плакировки и ее характеристики оказывают значительное влияние на параметры акустического тракта ПЭП.

По этой причине стандартные технологические решения являются неэффективными при контроле толстостенных сварных швов плакированных трубопроводов.

После многолетних исследований ученые выяснили основные особенности акустического тракта. Были получены рекомендации по оптимизации его характеристик и разработана технология выполнения ультразвукового анализа сварных швов с аустенитной плакировкой.

В частности, ученые установили, что при переотражении пучка ультразвуковых волн от границы перлит-аустенитной плакировки почти не меняется диаграмма направленности в случае плакировки прокаткой и значительно изменяется в случае нанесения плакировки наплавкой. Ее ширина существенно растет, а в пределах главного лепестка есть осцилляции в 15-20 дБ в зависимости от метода наплавки. Происходит значительное перемещение точки выхода отражения от границы плакировки пучка по сравнению с его местонахождением, а также изменяется скорость поперечных волн в переходной зоне.

При разработке технологии контроля сварных соединений плакированных трубопроводов учитывали все это. Данная технология предусматривает предварительное обязательное определение толщины перлитной части (глубины проплавления антикоррозионной наплавки).

Для более точного выявления плоскостных дефектов (несплавлений и трещин) лучше использовать ПЭП с углом ввода 45° и на частоту 4 МГц. Более точное обнаружение вертикально ориентированных дефектов на угле ввода 45° в отличие от углов 60 и 70° объясняется тем, что во время прозвучивания последними угол встречи пучка с дефектом близок к третьему критическому, при котором коэффициент отражения поперечной волны минимальный.
Во время прозвучивания трубы снаружи на частоте 2 МГц эхо-сигналы от дефектов экранирует интенсивный и длительный сигнал шума. Устойчивость к помехам ПЭП на частоту 4 МГц в среднем на 12 дБ выше. По этой причине полезный сигнал от дефекта, который находится в непосредственной близости от границы наплавки, будет лучше считываться на фоне помех. И наоборот, во время прозвучивания трубы изнутри через наплавку лучшую устойчивость к помехам обеспечат ПЭП на частоту 2 МГц.

Регламентирует технологию контроля сварных швов трубопроводов с наплавкой документ Госатомнадзора РФПНАЭГ-7-030-91.

Для промышленных инженерных коммуникаций введен ряд стандартов, подразумевающих довольно жесткую проверку соединений. Эти методики переносятся на системы, находящиеся в частном владении. Применение методов позволяет избежать аварийных ситуаций и провести наружный и скрытый монтаж с требуемым уровнем качества.

Входной контроль

Входной контроль труб проводится для всех типов материалов, включая металлопластиковые, полиэтиленовые и полипропиленовые после покупки изделий.

Упоминаемые стандарты подразумевают проверку труб, независимо от материала, из которого они изготовлены. Входной контроллинг подразумевает правила проверки получаемой партии. Проверка сварных соединений проводится в рамках приемки работ по монтажу коммуникаций. Описываемые способы обязательны к применению строительно-монтажными организациями при сдаче жилых, коммерческих и промышленных объектов с системами водоснабжения и отопления. Похожие способы применяются, где необходим контроль качества труб в коммуникациях промышленного типа, действующих в составе оборудования.

Последовательность проведения и методики

Приемка продукции после поставки является важным процессом, впоследствии гарантирующим отсутствие нерациональных затрат на замену трубной продукции и аварий. Тщательной проверке подлежит, как количество продукции, так и ее особенности. Количественная проверка позволяет учитывать весь расход продукции и избежать лишних затрат, связанных с завышенными нормами и нерациональным использованием. Нельзя упускать и влияние человеческого фактора.

Работы проводятся в соответствии с разделом № 9 стандарта СП 42-101-96.

Последовательность входных мероприятий следующая:

  • Проверка сертификата и соответствия маркировки;
  • Выборочные испытания образцов проводятся при сомнениях в качестве. Исследуется величина предела текучести при растяжении и удлинении при механическом разрыве;
  • Даже при отсутствии сомнений в поставке отбирается небольшое количество образцов для испытаний, в пределах 0,25-2% партии, но не менее 5 шт. При использовании продукции в бухтах, отрезают 2 м;
  • Проводится осмотр поверхности;
  • Осматривается на предмет вздутий и трещин;
  • Измеряют типовые размеры толщин и стенок микрометром или штангенциркулем.

При официальной проверке коммерческой или государственной организацией по факту проведения процедуры составляется протокол.

Неразрушающий контроль – особенности

Неразрушающие способы используются в функционирующих системах инженерных коммуникации. Особенное внимание уделяется реальному состоянию металла и сварным соединениям. Безопасность эксплуатации определяется качеством сварки швов. При длительной эксплуатации исследуется степень повреждения конструкции между соединениями. Они могут быть повреждены ржавчиной, что приводит к истончению стенок, а засорение полости может привести к повышению давления и прорыву трубопровода.

Для этих целей предложено специализированное оборудование – дефектоскопы (например, ультразвуковые), которые могут применяться для проведения работ в частных и коммерческих целях.

В исследованиях трубопроводов применяют методы контроля труб:


С помощью данного оборудование отслеживается развитие трещин или нарушение целостности. Причем основным достоинством является определение скрытых дефектов. Очевидно, что каждый из этих методов показывает высокую эффективность на определенных видах повреждений. Вихретоковый дефектоскоп в какой-то степени является универсальным и оптимальным по стоимости.

Ультразвуковой контроль труб – более дорогое удовольствие и требовательно, но очень популярно среди специалистов благодаря сформировавшемуся стереотипу. Многие сантехники используют капиллярный и магнитопорошковый метод, который применим для всех видов трубной продукции, включая полиэтиленовые и полипропиленовые. Среди специалистов популярно средство Testex для проверки герметичности сварки.

Заключение

Из предложенных способов неразрушающего контроля все 4 варианта успешно используются на практике, но не обладают абсолютной универсальностью. Система контроля труб включает в себя все виды дефектоскопов для проведения работ. Некоторой степенью универсальности обладает ультразвуковой способ, а также методика, основанная на вихревых токах. Причем вихревой вариант оборудования обходится значительно дешевле.