Тяжелые металлы в воде. Способы очистки. Способы очистки воды – от сложных систем до простых методов Очистка питьевой воды от тяжелых металлов

1 Обзор методов очистки сточных вод от ионов металлов и промышленных красителей

1.1 Методы очистки сточных вод от ионов металлов

Существует большое число специализированных процессов, используемых для удаления металлов из сточных вод. Такие отдельные операции включают:

– химическое осаждение;

– коагуляцию/ флокуляцию;

– ионный обмен и жидкостную экстракцию;

– цементацию;

– комплексообразование;

– электрохимические операции;

– биологические операции;

– адсорбцию;

– выпаривание;

– фильтрацию;

– мембранные процессы.

В промышленности наиболее широко используемый метод очистки растворов от тяжелых металлов – химическое осаждение, примерно в 75% гальванических процессов используется методика осаждения гидроксидами, карбонатами или сульфидами, либо комбинация указанных осадителей для обработки сточных вод. Наиболее широко используемая методика осаждения – гидроксильное или щелочное осаждение, благодаря относительной простоте, низкой стоимости осадителя (известь) и легкости автоматического рН контроля. Минимальная растворимость гидроксидов различных металлов варьируется при рН от 8.0 до 10.0 .

Известен способ реагентов осаждения сточных вод , предусматривающий перевод ионов металлов с труднорастворимые соединения при обработке сточных вод щелочными реагентами с последующим выделением их в осадок отстаиванием.

Способ осаждения ионов тяжелых металлов из промышленных сточных вод включает введение щелочного нейтрализатора при pH от 4 до 12, перемешивание и отстаивание с получением осадка, отличающийся от других спсобов тем, что осадок многократно подвергают контакту со следующими порциями исходного раствора с одновременной нейтрализацией раствора до значений pH, оптимальных для осаждения ионов тяжелых металлов.

Недостатком способа является то, что такие технологии не обеспечивают степень очистки от ионов тяжелых металлов, удовлетворяющую современным требованиям водохозяйственных органов. Кроме того, применение реагентных методов приводит к вторичному загрязнению воды – повышению ее солесодержания, что препятствует повторному использования очищенной воды в производстве. В ряде случаев после реагентной обработки необходима глубокая доочистка сточных вод от соединений тяжелых металлов.

Наиболее близким техническим решением предложен способ очистки шахтных вод путем деления потока обрабатываемой воды на две части, получения разноименно заряженных золей с их последующей взаимной коагуляцией, разноименно заряженные золи получают введением щелочного агента в одну часть потока до pH от 4,0 до 6,5, а в другую от 9,5 до 12,0 .

Недостатком этого способа является получение в результате взаимной коагуляции гидрофильного, влагоемкого и рыхлого осадка, увлекающего за собой значительное количество щелочного агента, что увеличивает расход последнего и шламовые площади, к тому же, технологическая схема предусматривает по крайней мере три точки контроля величины pH: в двух частях потока и на выходе после соединения потоков для их последующей взаимной коагуляции.

Для усовершенствования способа предложено создание оптимальных условий извлечения ионов тяжелых металлов из водоемких стоков с солесодержанием, способствующим образованию коллоидных, мелкодисперсных систем с трудноосаждаемыми взвесями.

Технический результат заключается в экономичности процесса за счет сокращения расхода реагентов и в увеличении степени извлечения ионов тяжелых металлов из сточных вод.

Сущность способа поясняется технологической схемой процесса, изображенной на рисунке 5.

Рисунок 5 – Технологическая схема технического процесса осаждения

Исходный раствор пропускали через тщательно отмытый кварцевый песок для удаления взвешенных веществ.

В соответствии с технологической схемой процесса, изображенной на рисунке 5, при непрерывном перемешивании проводят нейтрализацию исходного раствора 10%-ным раствором щелочи NaOH до оптимальной величины pH осаждения ионов тяжелых металлов, равной для данного раствора значению от 9,5 до 10,5 . За время перемешивания 10 мин, отстаивания до 15 мин возникала граница раздела между раствором и осадком. Объем осадка оценивается в процентах ко всему объему системы. Осветленную водную фазу отделяют от осадка декантацией, к осадку приливали новую порцию исходного раствора до начального объема, проводили нейтрализацию от pH 9,5 до 10,5 при непрерывном перемешивании и последующем отстаивании как было описано выше. Подобную процедуру повторяют четыре или пять раз. При этом всякий раз измеряют объемы осадка и осветленной водной фазы, в последней определяют концентрацию ионов тяжелых металлов

Цементация – процесс замещения металла, при котором в раствор, содержащий ионы металлов вводится более активный металл, например, железо. Таким образом, цементация – это выделение ионизированного металла из раствора в металлической форме за счет спонтанного электрохимического восстановления удаляемого металла с одновременным восстановлением введенного замещающего металла (железа) по реакции:

Cu2+ + Fe0 -> Cu0 + Fe2+.

Железо переходит в ионную форму, медь при этом выделяется на твердую поверхность . Процесс цементации может быть предсказан на основании значений электродных потенциалов. Для него присущ ряд преимуществ:

– простота требований в контроле и управлении,

– малое использование энергии,

– получение ценных высоко чистых металлов, таких как медь.

Скорость цементации не зависит от присутствия кислорода и значения pH. Однако при значениях рН выше 3, гидроксид железа маскирует и мешает выделению меди. Высушенный осадок содержит около 95,5 % чистой меди.

Проведенные исследования показали возможность использования отходов железа для выделения меди в стоках.

Комплексообразование основано на получении комплексного соединения на основе комплексообразующего или хелатного вещества. Комплексообразование связано с химическими характеристиками ионов удаляемых металлов и влияет на механизм извлечения. Например, комплексообразование металла увеличивает растворимость гидроксидов, карбонатов и сульфидов данного металла. На степень комплексообразования влияет рН раствора и концентрация реагента. С точки зрения селективности процесса комплексообразования с ЭДТА была показана возможность разделения меди и цинка в интервале рН от 5 до 6 .

Одним из приемлемых направлений в решении проблемы растворения металлов в органических средах является метод комплексообразования. Для систем без кратных связей наиболее устойчивыми являются пятичленные хелатные циклы. Системы с сопряженными двойными связями образуют шестичленные циклы. Энергетический выигрыш замыкания хелатных циклов (хелатный эффект) определяется как энтропийным, так и энтальпийным факторами.

Поиск систем, позволяющих стабилизировать металл в виде комплексов в органических средах, проводится постоянно, но число таких примеров невелико.

Одним из широко пpименяемых для очистки сточных вод электpохимических методов является электpолиз, дающий возможность выделения металла из pаствоpа на электpоде. Но электpолизный метод извлечения металлов из пpомывных вод встpечает пpеделенные тpудности при небольших концентpациях pаствоpов.

Этот процесс можно осуществить в двух режимах: или пpи постоянной плотности тока, или пpи постоянном потенциале.

Метод электpолиза пpи постоянной силе тока не pекомендуется для очистки pаствоpов, содеpжащих pазные виды ионов, так как пpи этом необходимо, чтобы в течение всего вpемени выделения металла плотность тока не пpевышала пpедельного значения . В пpотивном случае, еще до завеpшения выделения данного металла потенциал электpода может достигнуть величины, пpи которой начнется выделение дpугого металла, и состав осадка может быть неопpеделенным. Поэтому контpоль плотности тока в действительности означает контpоль потенциала электpода с целью поддеpжания его значения на уpовне, соответствующем выделению только одного металла. В этом случае метод электpоосаждения дает более надежные pезультаты.

Контроль этот можно осуществить, фиксируя определённый потенциал катода, на котоpом пpоисходит выделение металла, относительно неизменного потенциала электpода сpавнения.

Раздельное выделение металлов обеспечивается достаточным pазличием в потенциалах pазpяда ионов опpеделяемых металлов, обусловленным либо pазницей в ноpмальных электpодных потенциалах, либо pазницей в пеpенапpяжении, либо тем и дpугим вместе .

Один из трудных вопросов, связанных с разработкой электрохимических методов очистки сточных вод гальванических производств, является подбор анодного материала.

Существует такой способ очистки, при котором сточную воду, содержащую ионы тяжелых металлов и хрома (VI), подвергают гальванохимической обработке в одну ступень с последующей корректировкой рН, нагреванием, вьщерживанием при повышенной температуре и отделением малообъемного тонкодисперсного кристаллического осадка . Данный способ обеспечивает уменьшение объема отделяемого осадка при сохранении высокой эффективности очистки, а также снижение вымываемости ионов тяжелых металлов из осадка.

Во многих отраслях промышленности мембранные процессы широко применяются при вторичном использовании воды, для уменьшения объема сточных вод, и улавливания ценных побочных продуктов (например, металлов). Все мембранные процессы могут быть трех типов: высокого давления, низкого давления и ультрафильтрация. В качестве мембран используются ацетат целлюлозы, полиамиды, полисульфон и т.д. Было отмечено, что мембранные процессы более дорогостоящие по сравнению с соответствующими процессами дистилляции при малых и средних объемах сточных вод. При мембранной экстракции тяжелых металлов отпадает необходимость перемешивания и установки движущихся частей аппаратуры, что значительно снижает стоимость оборудования.

Получены результаты исследований проведенных по применению мембранных нетканных фильтров на основе полиакрилонитрильных волокон, модифицированных кислотными группами NO3и PO4 для очистки стоков свинцово-цинковых комбинатов и производств с использованием процессов гальвано-техники. Показана возможность удаления не только ионов тяжелых металлов до уровня ПДК, но и очистка от продуктов их химических трансформаций с комплексообразователями и хелатами органической и неорганической природы (цианиды, роданиды, аммиакаты, комплексы с ЭДТА и 1,1 – дипиридилом .

За последние несколько лет был представлен ряд новейших технологий. Были изучены основные факторы влияющие на скорость реакции при сульфидном осаждении как вторичной ступени после нейтрализации и отстаивания. Исследовались комплексы металлов с ЭДТА, как известно образующей наиболее стойкие комплексы с металлами. Начальная скорость реакции увеличивалась за счет добавления нехелатированных солей металлов. Был разработан фильтр, содержащий активные сульфиды, для адсорбции растворимых ионов тяжелых металлов.

Была разработана непрерывная система для магнитного отделения ионов тяжелых металлов с использованием ферритов или магнетитов. Преимуществами процесса можно считать, что:

– различные тяжелые металлы могут быть обработаны одновременно;

– образующийся осадок не зависит от рН и температуры;

– остатки феррита могут быть отделены наложением магнитного поля.

Таким образом, для очистки сточных вод от ионов металлов существует многообразие способов очистки, которые можно объединить в несколько групп: реагентные методы, методы электролиза, методы ионного обмена, сорбционные методы. Основные достоинства и недостатки данных методов приведены в приложении А.

1.2 Методы очистки сточных вод от промышленных красителей

В целом, все известные методы очистки сточных вод красильно-отделочных производств можно разделить на три основные группы.

Первая группа – методы, основанные на извлечении загрязнений в осадок или флотошлаки путем сорбции на хлопьях гидроксидов металлов, образующихся при реагентной обработке. Это коагуляция, электрокоагуляция, напорная флотация.

Например, известен способ очистки сточных вод от красителей, который включает введение органического коагулянта и минеральной добавки, причем в качестве органического коагулянта используют продукт конденсации дициандиамина с формальдегидом и гексаметилентетрамином в среде уксусной кислоты, а в качестве минеральной добавки – силикат натрия.

Способ осуществляется следующим образом: сточные воды, содержащие красители, обрабатывают указанным выше коагулянтом. Доза коагулянта зависит от концентрации в воде красителей и подбирается экспериментально, путем пробного коагулирования. Через 3-10 мин после ввода коагулянта добавляют силикат натрия. Процесс очистки сточных вод проходит в течение 10-40 мин. Образующийся осадок – хлопьеобразный, легкий может быть удален путем флотации, отстаиванием, фильтрованием .

Также, известен способ очистки сточных вод красильно-отделочных производств, который включает коагуляцию с последующей флокуляцией и отстаиванием. Отличается тем, что в качестве флокулянта используют гидролизат шерсти, приготовленный из производственных отходов шерсти путем их растворения в 0,1 н растворе щелочи.

Данный способ осуществляют следующим образом. Готовят флокулянт из производственных отходов шерсти путем их растворения в 0,1 н раствора щелочи (при соотношении 1 г шерсти на 100 мл раствора) нагреванием при температуре от 90 до 100°C в течение от 1,5 до 2 ч с последующим выдерживанием в течение от 20до 24 ч и десятикратным разбавлением водой . Флокулянт вводят в очищаемые сточные воды после их обработки алюминийсодержащим коагулянтом так, чтобы конечная концентрация флокулянта в сточных водах составила от 1 до 3 мг/л (по массе шерсти), рН после введения флокулянта доводят от 6,5 до 7.

Недостатками методов первой группы являются невысокая степень очистки, особенно по обесцвечиванию, необходимость эмпирического подбора реагентов, трудность дозировки реагентов, образование значительных количеств осадков или флотошлама, необходимость их обезвреживания, захоронения или складирования.

Вторая группа включает сепаративные методы, такие как сорбция на активных цепях и макропористых ионитах, обратный осмос. ультрафильтрация, пенная сепарация, электрофлотация.

Например, известен способ очистки сточных вод от красителей, который включает их предварительную очистку, разделение обратным осмосом с получением потока очищенной воды и потока концентрата, выпаривание концентрата до сухого остатка. Отличается тем, что разделение обратным осмосом ведут с получением концентрата, а после чего проводят его ультрафильтрацию.

Способ осуществляется следующим образом: очищаемую сточную воду, содержащую красители подают на узел предварительной очистки, где ее очищают от взвешенных веществ, осветляют и нейтрализуют введением раствора NaOH. Предварительно очищенную воду подают в аппарат разделения обратным осмосом, из которого отводят поток очищенной воды, возвращаемой в производство, и концентрат, содержащий краситель. Концентрат отводят и направляют в патрубок струйного насоса. После ультрафильтрации ультрафильтрат направляют на выпаривание, например, в аппарат с падающей пленкой и шнековой выгрузкой сухого остатка. Полученный сухой остаток может быть использован в стекольном производстве или направлен на захоронение .

Методы второй группы обеспечивают высокую степень очистки, но требуют предварительной механической обработки с целью удаления нерастворимых примесей, сложны в аппаратурном оформлении, имеют высокую себестоимость.

Третья группа объединяет деструктивные методы, основанные на глубоких превращениях органических молекул в результате редокспроцессов. Из деструктивных методов наиболее широко применяется очистка стоков окислителями, реагентное восстановление электромеханическая и электрокаталитическая деструкция. К окислительным же методам следует отнести биохимическую очистку.

Среди деструктивных методов наиболее перспективным способом обесцвечивания сточных вод является озонирование. Применение озона позволяет снизить окраску отработанного красильного раствора после крашения каракуля в черный цвет по разведению в 10 раз при начальной цветности по разведению 1:4000. Озонирование раствора желательно проводить с подщелачиванием красильного раствора до рН 12,5. Окончательное обесцвечивание возможно достичь в результате отстаивания озонированного раствора в течение 40 мин с образованием осадка темного цвета (объемом 10% объема красильного раствора). Несмотря на то, что этот метод весьма эффективен, но пока он чаще находится в стадии лабораторных проработок из-за отсутствия хороших озонаторных установок, а также большого расхода озона и высокой энергоемкости при его получении. Кроме того, высокая стоимость получения озона не позволяет рекомендовать данный метод для обесцвечивания сильно концентрированных отработанных красильных растворов от окислительного крашения меха.

Наибольший интерес представляет экологически чистый окислитель – пероксид водорода. Например, известен способ очистки сточных вод от органических красителей, включающий фильтрование подкисленной воды через металлическую загрузку. Отличается тем, что на расстоянии от 0,1 до 0,5 длины слоя загрузки по ходу движения воды вводится пероксид водорода, а в качестве металлической загрузки фильтра используют материалы, изготовленные из элементов d-подгруппы периодической системы элементов, или их сплавы .

В качестве окислителя возможно также использовать активный хлор. Деструктивные превращения под воздействием хлора и его соединений в настоящее время считаются не только эффективными по степени обесцвечивания красителей и снижения ХПК, но и достаточно экономичными процессами. Свободный и содержащийся в различных соединениях хлор способный вступать в реакции хлорирования и окисления органических веществ и других примесей воды, характеризует концентрации так называемого активного хлора. Он обладает высоким окислительным потенциалом и относительной дешевизной. Аппаратурное оформление современных хлораторных установок достаточно компактное и они легко могут быть автоматизированы. Однако, применение активного хлора имеет ряд серьезных недостатков, сдерживающих широкое внедрение данного метода на практике: высокая хлороемкость многих сточных вод; изменение солевого состава воды и увеличение плотного остатка; возможность образования хлорпроизводных и хлоратов, подлежащих дальнейшему удалению. Кроме того, процесс очистки продолжается довольно долго (от1 до 2 ч) и даже при столь длительной экспозиции в обработанной воде остается еще значительное количество активного хлора, что требует принятия специальных мер для дехлорирования.

Также существует способ очистки сточных вод от красителей, преимущественно анилиновых, который включает электролиз при плотности тока от 200 до 300 А/м² в присутствии пероксида водорода с анодами из титана с нанесенным на его поверхность композиционным электрохимическим покрытием платина-графит. Способ осуществляют следующим образом: сточные воды, содержащие анилиновые красители, смешивают с пероксидом водорода и подвергают электролизу. В качестве анода в электрохимической ванне используют титан с нанесенным на его поверхность композиционным электрохимическим покрытием платина-графит, а плотность анодного тока при этом составляет от 200 до 300 А/м², при электролизе происходит глубокая деструкция красителей, при этом достигается практически полное обесцвечивание сточных вод .

Методы третьей группы технологичны, эффективны, не дают осадков, не вносят дополнительные загрязнения.

Таким образом, в результате использования традиционных коагулянтов и окислителей для обесцвечивания отработанных красильных растворов после процессов крашения экономически не выгодно. В связи с этим, проблема очистки сточных вод от промышленных красителей должна решаться путем применения нетрадиционных химических материалов.

1.3 Методы сорбционной очистки сточных вод

1.3.1 Методы сорбционной очистки сточных вод от тяжелых металлов

Очистка сточных вод от тяжелых металлов – жизненно важное направление улучшения экологической обстановки в окружающей среде, так как повышенное содержание солей тяжелых металлов крайне отрицательно действует на организм человека.

Известные ионообменные методы очистки требуют значительных капитальных затрат . Поэтому все большее применение находят сорбционные методы с использованием неуглеродных сорбентов естественного и искусственного происхождения (глинистые породы, цеолиты и др.). Сорбционная обработка целесообразна как последняя стадия после механической и других, более дешевых видов очистки от грубодисперсных, коллоидных и части растворенных примесей. Достоинством метода является высокая эффективность, возможность очистки сточных вод, содержащих несколько веществ. Также важным является возможность регенеративной адсорбционной чистки, то есть извлечение вещества из сорбента, его утилизация и деструкция.

Обезжелезивание воды – одна из наиболее важных проблем при очистке воды. Она возникает при использовании питьевых вод, а также при очистке промышленных сточных вод, содержащих ионы железа, в количествах, превышающих предельно допустимые концентрации (ПДК).

На сегодняшний день не существует единого универсального метода комплексного удаления всех существующих форм железа из воды .

Существует способ сорбционной очистки сточных вод от ионов железа, в котором в качестве сорбента применяют модифицированный сорбент на основе монтмориллонита. Модифицированные образцы сорбентов изготавливались с использованием связующих компонентов и активных ингредиентов с последующим прокаливанием при различных температурах .

Результаты исследований по адсорбционной очистке воды от ионов железа приведены в таблице 1.

В результате установлено, что сорбционная способность сорбента зависит от температуры обжига и размеров гранул. Лучшую сорбционную способность проявляют сорбенты размерами от 1 до 2 мм, прокаленного при 400°С .

Таблица 1 – Результаты исследований по адсорбционной очистке воды от ионов железа (концентрация модельного раствора – 0,7 мг/дм³, скорость фильтрования – 0,6 дм³/ч)

Сорбент ГС (400°С) ГС (400°С) ГС (600°С) ГС (600°С) ГС (800°С) ГС (800°С)

Размер гранул, мм 1–2 5–6 1–2 5–6 1–2 5–6

Масса, г 21,25 17,15 14,21 11,35 13,9 11,45

Объем поглощенного раствора, см³ 10 5 8 4 7 4

Конечная концентрация раствора, мг/дм³ 0,04 0,34 0,15 0,34 0,19 0,41

Степень поглощения, % 94 51 79 51 72 41

Также известен способ сорбционной очистки сточных вод от ионов железа, в котором в качестве сорбента применяют пыль электросталеплавильных цехов. Данная пыль представляет собой тонкодисперсную систему многокомпонентного состава. Присутствие в составе пыли значительного количества оксида кальция, малый размер частиц и высокоразвитая поверхность позволяет использовать ее в качестве сорбента. В данном случае используют способ одноступенчатой статической сорбции: к сорбенту добавляли образцы сточных вод, смесь перемешивали магнитной мешалкой. Через определенные промежутки времени отбирали пробу и анализировали ее на содержание ионов железа, которое находили спектрофотометрическим сульфосалицилатным методом. В результате оптимальная масса сорбента составила 0,5 г .

Существует несколько способов сорбционной очистки сточных вод от ионов хрома. Например, в качестве сорбционных материалов используют модифицированные природные волокнистые материалы, например, древесные опилки, целлюлозу, льнотресту, костру. Этот способ очистки позволяет объединить в одну стадию удаление из растворов высокотоксичных ионов хрома шестивалентного и образующихся в результате восстановления ионов хрома трехвалентного .

Также существует способ очистки сточных вод от ионов тяжелых металлов и хрома шестивалентного, который может найти применение на предприятиях металлургической и химической промышлености, имеющих травильные и гальванические цеха. Для осуществления способа сточные воды, содержащие ионы хрома и другие тяжелые металлы, пропускают через слой цеолита, предварительно обработанный раствором щавелевой кислоты с концентрацией от 0,05 до 0,1 моль/л в присутствии минеральной кислоты до рН от 1 до 2 .

Известен способ, обеспечивающий расширение диапазона извлекаемых веществ, упрощение и удешевление технологии очистки сточных вод за счет использования прочного адсорбента с хорошими сорбционными свойствами фильтрационными качествами. Такой адсорбент для очистки получают смешением природного торфа, песка, глины и диатомита (20-60% по весу), которые сначала смешивают с нефтью (от 10 до 20% по весу), водой и от 3 до 8% водным раствором ПАВ (от 5 до 10% по весу), затем обрабатывают оксидами кальция или магния (от 25 до 50% по весу), сушат и прокаливают при температуре от 300 до 600°С .

Предложен метод очистки сточных вод, образующихся, например, в гальванических или других аналогичных производствах, от ионов тяжелых металлов. Способ основан на сорбции ионов тяжелых металлов на природном нерастворимом сорбенте – пирите, предварительно обогащенном от 84 до 96%, причем размер зерна использующегося сорбента составляет не более 160 мкм . Данный способ обеспечивает удешевление очистки сточных вод, а также получение продукта сорбции, пригодного для длительного хранения и транспортировки.

Сущность следующего метода состоит в фильтровании сточной воды, содержащей тяжелые металлы, через слой сорбента, представляющего из себя измельченную корковую часть коры хвойных пород древесины, подвергнутую экстракции горячей водой, при определенной температуре и скорости протекания. Способ эффективен, так как сорбционная способность использованного сорбента выше по сравнению с другими аналогичными природными лигноуглеводными материалами. Продукт сорбции можно утилизировать путем сжигания .

В последнее время появились идеи, которые предлагают использовать в качестве сорбента производственные отходы, например, тонкодисперсный шлак ОЭМК. Данный сорбент использовали для очистки сточных вод, содержащих ионы никеля, меди и железа.

Принципиальная схема очистки сточных вод приведена на рисунке 6.

Рисунок 6 – Принципиальная схема очистки сточных вод

Результаты рентгенофазового анализа показали наличие в исходном шлаке различного вида силикатов кальция и магния, а также кальцита, оксидов железа, магния и гидроксидов кальция . Также было установлено наличие на поверхности частиц шлака множественных поверхностных дефектов решетки в виде трещин, пиков, шероховатостей, что должно обеспечить хорошие сорбционные свойства шлака. Наличие сорбционных свойств дало возможность предположить высокую эффективность очистки вследствие образования малорастворимых осадков гидроксидов металлов и протекания процессов адсорбции. Результаты очистки сточных вод данным адсорбентом представлены в таблице 2.

Сегодня проблема качества питьевой воды волнует многих людей во всем мире. Вследствие нехватки чистой питьевой воды и регулярного употребления воды низкого качества, более пятисот миллионов человек в мире страдают от различных заболеваний. Для мегаполисов проблема чистоты и качества питьевой воды особенно актуальна.

Существует множество причин загрязнений питьевой воды. Все эти причины прямо или косвенно связаны с источниками воды. Часто водопроводная вода имеет не артезианское происхождение, а берется из доступных открытых поверхностных источников. Каждый тип водного источника имеет свои собственные характерные причины, которые вызывают загрязнение воды.

Изобретено множество способов предварительной подготовки питьевой воды, а так же методов ее очистки, позволяющих получить практически из любого источника питьевую воду высокого качества.

Очистка воды представляет собой специальный комплекс мероприятий по удалению различных загрязнений, содержащихся в ней. Очистка воды производится на специальных водоочистных сооружениях, а так же в домашних условиях.

Вода, прежде чем попасть в кран конечного потребителя, проходит обеззараживание (чаще всего – хлором, реже используют установки ультрафиолетового облучения), и комплексную очистку на водоочистных станциях.

Рассмотрим наиболее распространенные методы и способы очистки питьевой воды.

Методы очистки питьевой воды

Распространенные методы подготовки и очистки воды:
— осаждение;
— осветление;
— мембранные методы;
— химические реагенты для окисления;
— адсорбция;
— обезжелезивание;
— умягчение;
— обессоливание;
— кондиционирование;
— обеззараживание;
— удаление органических загрязнений;
— дехлорирование;
— удаление нитратов.

Основные методы очистки воды можно разделить на:

  • механические,
  • биологические,
  • химические,
  • физико-химические,
  • дезинфекция.

К механическим методам относятся различные виды фильтрации или фильтрования воды, процеживание воды, отстаивание воды. Все эти способы относительно недорогие и доступные, их основное использование сводится к отделению от воды различных взвесей.

Мембранный способ очистки питьевой воды заключается в том, что воду пропускают через полупроницаемую перегородку, отверстия которой меньше размера частиц загрязнений.

В основе биологических методов очистки воды лежит способность микроорганизмов подвергать разложению органические соединения. Эти методы обычно применяют для нейтрализации растворенных в воде органических соединений.

С помощью химических методов водной очистки нейтрализуют различные неорганические примеси. Сточные воды обычно обеззараживают, обесцвечивают, нейтрализуют растворенные в них соединений с помощью химических реагентов.

Физико-химические методы очистки воды применяют для нейтрализации коллоидных примесей, растворенных соединений, очистки от грубо- и мелко-дисперсионных частиц. Эти методы отличается высокой производительностью.

Адсорбация – один из физико-химических способов очистки воды. Это процесс так называемого избирательного поглощения твердыми поглотителями, имеющими большую удельную поверхность, одного или нескольких компонентов из жидкой среды. В качестве адсорбентов применяют различные искусственные либо природные пористые материалы: активные глины, торф, зола, коксовая мелочь, силикагель, активированные угли и прочее.

Для окончательной очистки и обеззараживания воды, в основном, применяют:

  • Ультрафильтрацию;
  • Хлорирование;
  • Ультрафиолетовое излучение;
  • Озонирование;
  • Безреагентные способы обезжелезивания.

– это процесс удаления из воды различных механических и химических примесей. Очистка с помощью этого способа строится исходя из химического и физического состава воды, который определяется специальными пробами. Химические вещества, растворенные в воде в количествах, превышающих установленные нормы, осаживаются с помощью специальных процессов, после чего вода прогоняется через фильтры различной степени фильтрации, которые задерживают те или иные примеси.

Умягчение – это процесс извлечения из воды солей жесткости (кальция и магния). Селективное удаление солей жесткости производится несколькими методами: реагентным умягчением, ионным обменом, при котором ионы загрязненного раствора меняются местами с ионами ионообменного материала, в качестве которого используются различные ионообменные смолы. Умягчение воды снижает угрозу отложения труднорастворимых соединений на стенках и ведущих элементах промышленного оборудования. Установки обратного осмоса предприятий позволяют производить глубокую очистку воды с максимальным качеством по большинству показателей.

Хлорирование не позволяет очистить воду должным образом и способствует образованию примесей, вредных для организма человека. С одной стороны хлорированная вода защищает нас от ряда опасных вирусов и патогенных бактерий, с другой стороны хлор разрушает белковые структуры нашего тела, влияет на состояние слизистых оболочек, убивает полезные бактерии в кишечнике, что способствует ухудшению микрофлоры и может провоцировать появление аллергических реакций. Кроме этого, хлор не убивает яйца остриц и цисты лямблий.

В США и Европе в 1970х годах были разработаны экономичные и эффективные способы с использованием ультрафиолета, которые позволили в большей степени отказаться от хлорирования питьевой воды.

Очистка ультрафиолетовым излучением — наиболее популярный метод очистки воды. Степень обеззараживания воды при обработке ультрафиолетом достигает 99%. Это позволяет использовать способ в пищевой промышленности и на производстве, имеющем особо высокие требования к чистоте воды. Эффективность этого способа напрямую зависит от характеристик воды – ее прозрачности – мутности, цвета, содержания железа. Поэтому, данный способ обычно применяется в комплексе с другими методами на конечной стадии обработки.

Очистка воды с помощью озонирования основана на применении газообразного озона. В процессе взаимодействия с вредными химическими элементами, озон превращается в кислород. Доказано, что озонирование оказывает сильное положительное влияние на организм человека. Озонирование имеет преимущество перед обработкой воды хлором, поскольку не образует токсинов.

Обезжелезивание – это процесс удаления из воды железа. Применяют несколько видов обезжелезивания воды, выбирая их в зависимости от того, какое именно железо содержится в обрабатываемой воде: двух валентное, трехвалентное, органическое или бактериальное. Безреагентные способы обезжелезивания применяют для устранения избыточного содержания в воде железа, нитратов и других загрязнений, придающих воде неприятный вкус, запах, цвет и ржавчину. Зачастую из воды также удаляется марганец, и процесс называется деманганацией.

В наше время уровень загрязнения достаточно высок, поэтому процесс очищения питьевой воды очень важен. Для подбора наиболее подходящего и эффективного способа очистки питьевой воды следует сделать ее анализ.

Способы очистки воды

Существует множество способов доочистки питьевой воды в домашних условиях. Рассмотрим наиболее популярные.

I. Очистка питьевой воды без применения фильтров.

Такие способы, как кипячение, вымораживание или отстаивание, применяются с давних времен.

1. Кипячение.

Кипячение воды является наиболее простым и известным способом очистки воды. Кипячение применяют с целью уничтожения вирусов, бактерий, микроорганизмов и другой органики, удаления хлора и других низкотемпературных газов (радон, аммиак и др.). Процесс кипячения помогает в некоторой степени очистить воду, но имеет ряд побочных эффектов:

— при кипячении изменяется структура воды, она становится «мертвой». Чем больше мы кипятим воду, тем больше погибает в ней патогенных организмов, однако при этом вода становится менее полезной для организма человека.

— при кипячении происходит испарение воды, что приводит к повышению концентрации солей. Они оседают на стенках чайника в виде накипи и попадают в организм человека. Накапливаясь в организме человека, соли приводят к различным заболеваниям — начиная от болезней суставов, образованию камней в почках и окаменению (циррозу) печени, и заканчивая артериосклерозом, инфарктом и мн. др.

— многие виды вирусов могут перенести кипячение воды, поскольку для их уничтожения требуются более высокие температуры.

— при кипячении воды удаляется только газообразный хлор. В лабораторных исследованиях был подтвержден тот факт, что после кипячения водопроводной воды образуется дополнительный хлороформ, даже если перед кипячением воды была освобождена от хлороформа продувкой инертным газом. Это опасное для здоровья канцерогенное вещество может вызывать онкологические заболевания.

Таким образом, после кипячения мы получаем «мертвую» воду, в которой имеется мелкая взвесь и механические частицы, соли тяжелых металлов, хлор и хлорорганика, вирусы и др.

2. Отстаивание.

Отстаивание, в основном, применяют для удаления из воды хлора. Для отстаивания водопроводную воду наливают в большое ведро или банку и оставляют на 8-12 часов. Без дополнительного перемешивания воды удаление газообразного хлора происходит примерно с 1/3 глубины от поверхности воды, поэтому для получения заметного эффекта необходимо следовать разработанным методикам отстаивания.

Важно помнить, что соли тяжелых металлов самостоятельно из отстоянной воды не исчезнут — в лучшем случае они осядут на дне. Поэтому следует использовать лишь 2/3 содержимого банки, стараясь не взбалтывать ее в процессе переливания воды, чтобы осадок на дне не смешался с более-менее очищенной водой.

Эффективность отстаивания воды обычно оставляет желать лучшего. Для усиления эффекта воду так же настаивают на кремнии и/или шунгите. После отстаивания воду обычно подвергают кипячению.

3. Заморозка или вымораживание.

Этот способ применяют для эффективной очистки воды с помощью ее перекристаллизации. Вымораживание гораздо эффективнее кипячения и перегонки, поскольку фенол, хлорфенолы и легкая хлорорганика перегоняются вместе с водяным паром.

Большинство людей под процессом вымораживания понимают следующие действия:

  1. налить воду в посуду и поставить ее в холодильник до замерзания
  2. вынуть посуду со льдом из холодильника и разморозить ее для питья.

Эффект очистки воды таким способом близок к нулю, хотя вода получается немного лучше водопроводной воды.

Правильное вымораживание основывается на химическом законе, согласно которому при замерзании жидкости прежде всего в наиболее холодном месте кристаллизуется основное вещество (вода), а затем в наименее холодном месте затвердевает все, что было растворено в основном веществе (примеси). То есть чистая пресная вода замерзнет быстрее, чем вода с примесями солей. Этому закону подчиняются все жидкие вещества. Самое главное — обеспечить медленное замораживание воды, и вести его так, чтобы в одном месте сосуда его было больше, чем в другом. (подробнее смотрите в книге: «Осторожно! Водопроводная вода! Ее химические загрязнения и способы доочистки в домашних условиях.», авторы: Скоробогатов Г.А., Калинин А.И. – Санкт-Петербург, издательство Санкт-Петербургского университета, 2003).

Следите за процессом замораживания, и когда вода наполовину замерзнет, незамерзшую воду вылейте (в ней остались все вредные примеси), а замороженную воду можно растопить и использовать для питья и приготовления пищи.

Размороженная (талая) вода, выпитая сразу после оттаивания, является чрезвычайно полезной и целебной, она способна ускорить восстановительные процессы в организме, повысить работоспособность, облегчить состояние при различных заболеваниях.

4. Очищение воды с помощью поваренной соли. Заполните двухлитровую емкость водой из-под крана, затем растворите в ней одну полную столовую ложку соли. Через 20-25 минут вода будет свободна от вредных микроорганизмов и солей тяжелых металлов, однако такую воду не рекомендуется использовать ежедневно.

5. Очистка воды с помощью кремния помогает очистить воду от примесей. Этот способ объединяет отстаивание воды и очистку кремнием. Предварительно кремний необходимо хорошо промыть в теплой проточной воде. Затем положите кремний в двухлитровую банку, заполните ее холодной водой, накройте сверху марлей и поставьте на свету вдали от прямых лучей солнца. Через два-три дня очищенная вода будет готова к использованию. Величина кремниевого камня подбирается из расчета 3-10 грамм кремния на 1-5 литров воды. Очищенную воду аккуратно слейте в другую емкость, оставив 3-5 сантиметров воды с осадком. Затем осадок выливается, кремний и банка моются и заполняются новой порцией воды.

6. Очистка воды с помощью шунгита. В последнее время все более популярным становится очистка воды с помощью шунгита. Для очистки рекомендуют использовать крупные камни, тогда они реже будут нуждаться в замене на новые. Алгоритм очистки следующий: На каждый литр воды берут 100 граммовый камень шунгита. Воду наливают в емкость с камнями на три дня (не более!), после чего вода сливается так же, как и при приготовлении кремниевой воды.
Вода, настоянная на шунгите имеет противопоказания: склонность к онкологическим заболеваниям, тромбообразованиям, повышенной кислотности и наличие болезней в стадии обострения.

7. Очистка воды активированным углем. Для очистки воды вы можете воспользоваться активированным углем – он составляет основу большинства фильтров. Уголь является прекрасным нейтрализатором неприятных запахов (например, старых ржавых труб, хлора). Кроме этого уголь впитывает вредные вещества из водопроводной воды.
Поместите таблетки активированного угля (из расчета 1 таблетка на 1 литр воды) в марлю, заверните и поместите в емкость с водой. Уже через 8 часов будет готова чистая вода.

8. Очистка воды серебром. Серебром можно очищать воду, освобождая ее от химических соединений, вирусов и патогенных микроорганизмов. По антибактерицидному действию серебро обогнало карболовую кислоту и хлорку.
Поместите в емкость с водой на ночь серебряную ложку, монету или другой предмет. Через 10-12 часов очищенная вода будет готова к употреблению. Полезные свойства такая вода сохраняет продолжительное время.

9. Другие народные методы очистки воды :

— очистка воды гроздью рябины — гроздь рябины следует опустить на два-три часа в воду.

— очистка корой ивы, луковой шелухой, ветками можжевельника и листьями черемухи — процесс очищения длится 12 часов.

— очистка уксусом, йодом, вином. Вещество помещают в воду на 2-6 часов из расчета: 1 чайная ложку уксуса, либо 3 капли 5%-го йода, либо 300 грамм молодого сухого белого вина на 1 литр воды. При этом, хлор и некоторые микробы в воде все равно остаются.

II . Очистка питьевой воды с применением фильтров.

Для удаления вредных примесей из воды в промышленности, в коммунальном хозяйстве и в быту используют различные фильтры. Технологии очистки, применяемые в промышленных и бытовых фильтрах, могут совпадать, однако заметно отличается производительность бытовых и промышленных фильтров.

Рассмотрим классификацию фильтров.

По типам фильтруемых примесей различают фильтры для очистки воды от железа, от механических примесей, от органических соединений и т.д.

Различают фильтры предназначенные для технической воды и фильтры используемые для питьевой воды. Для фильтрации питьевой воды обычно применяют фильтры-кувшины и фильтры — насадки на кран, а так же сложные многокомпонентные фильтрующие системы. Их так же различают по степени очистки – простейшей степени очистки, средней степени и высшей степени очистки.

Бытовые фильтры различаются так же по способу установки: фильтры, устанавливаемые под мойку, настольные фильтры, фильтры-насадки на кран.

По способу фильтрации домашние фильтры для очистки питьевой воды можно условно разделить на два основных типа: – накопительные и проточные.

Накопительные фильтры обычно состоят из накопительной емкости для воды и фильтрующего картриджа для очистки воды. Чаще всего это фильтры-кувшины (Аквафор, Брита, Барьер и другие). Ресурс эффективной работы фильтрующего картриджа напрямую зависит от качества используемой воды. Сменные картриджи этого класса фильтров имеют тенденцию накапливать загрязнения, поэтому их необходимо своевременно менять на новые.

Проточные фильтры используют для более тщательной очистки воды. Степень очистки напрямую зависит от поставленной задачи.

Если требуется очистить воду только от запаха, привкуса или хлора, то можно ограничиться использованием угольного фильтра. С этим отлично справляется фильтр-насадка на кран, который содержит внутри фильтрующий воду картридж (полипропиленовый, угольный либо ионообменные смолы).

Если стоит задача получить хорошую питьевую воду, то целесообразно использовать ступенчатые проточные системы фильтрования воды. Для этого используют многоступенчатые фильтры средней степени очистки. В зависимости от модели такая система устанавливается под мойкой, либо на столе.

Двухступенчатые фильтры предназначены для механической очистки на первой ступени, вторая ступень очистки осуществляется с помощью активированного угля. Трехступенчатые фильтры, дополнительно к этим двум ступеням, имеют третью ступень очистки — ионообменную смолу или прессованный активированный уголь для тонкой очистки, обогащенный одной или несколькими добавками: серебро, ионообменное вещество, кристаллы гексаметафосфата и т.д..

Если требуется получить питьевую воду высокого качества, то целесообразно использовать ступенчатые системы фильтрования воды высшей степени очистки с мембранной фильтрацией – системы обратного осмоса, фильтры с ультрафильтрационной мембраной, нано-фильтры.

В методе обратного осмоса основным фильтрующим элементом является обратноосмотическая мембрана, на которой происходит глубокая очистка воды от различных типов загрязнений: от солей тяжелых металлов, пестицидов, гербицидов, нитратов, вирусов и бактерий. Мембрана постоянно очищает саму себя частью фильтрующейся воды, сбрасывая весь мусор в канализацию. Это повышает расход воды. Такая очистка убирает из воды все соли и минералы, и регулярное употребление такой воды вымывает из организма кальций, фтор и прочие необходимые вещества.

Ступени очистки воды, обычно применяемые в обратноосмотических фильтрах:

1 ступень — картридж состоящий из витого или вспененного полипропилена, осущесвляющий предочистку от механических примесей и взвесей (15-30 мкм)

2 ступень — очистка активированным углем от хлора и хлорорганических соединений, газов.

3 ступень — тонкая очистка от механических примесей (1-5 мкм) или доочистка спрессованным активированным углем (CBC-CarbonBlock), увеличивающая срок службы тонкопленочной мембраны.

4 ступень — очистка тонкопленочной мембраной обратного осмоса (размер пор 0.3-1 нанометра)

5 ступень — угольный постфильтр

Иногда используется еще дополнительная ступент – минерализатор очищенной воды.

Проточные фильтры с ультрафильтрационной мембраной так же относится к способам мембранной очистки воды. Материалом для ультрафильтрационой мембраны служит трубчатый композит.

Внешне фильтрационная система очень похожа на обратноосмотическую систему, однако очистка способом обратного осмоса осуществляется более качественно по сравнению с очисткой ультрафильтрационной мембраной. Все отфильтрованные загрязнения остаются в порах мембраны, постепеннозабивая ее. Эти фильтры обычно не изменяют жесткость воды.

Фильтры с ультрафильтрационной мембраной так же имеют пятиступенчатую систему очистки воды. Она включает в себя следующие ступени фильтрации:

На первой ступени очистки вода проходит картридж предварительной механической очистки. Он удаляет механические частицы и взвеси размером до 10 мкм (микрон). Материалом для него служит вспененный или витой полипропилен.

На второй ступени очистки вода проходит через картридж с активированным гранулированным углем. На этом этапе вода очищается от хлора и его соединений, газов, органических веществ. При этом улучшаются вкусовые качества воды.

На третьей ступени очистки вода пропускается через картридж, содержащий спрессованный активированный уголь. При этом происходит дополнительное удаление из воды механических примесей диаметром до 0,5мкм (микрон) и хлорорганических соединений.

На четвертой ступени очистки вода проходит через ультрафильтрационную мембрану, имеющую отверстия диаметром 0,1-0,01 мкм, изготовленную из трубчатого композита. Мембраной удаляются практически все примеси, растворенные в воде, органические загрязнители, вирусы, бактерии, соли тяжелых металлов, таких как ртуть, железо, марганец, мышьяк. Затем вода проходит через in-line картридж, изготовленный из активированного кокосового угля. На этом этапе происходит окончательная доочистка воды, улучшается ее вкус, и удаляются запахи.

Нанофильтры — это последняя разработка японских ученых в области нано и биотехнологий. Это проточный семиступенчатый комплекс качественной очистки воды, позволяющий удалить из нее все вредные примеси и сделать воду максимально полезной для организма человека.

На выходе система выдает очищенную и структурированную питьевую воду, по своим свойствам аналогичную талой воде. При этом система позволяет регулировать уровень рН.

Количественный показатель ионов водорода в воде часто оказывает влияние на физико-химические свойства и биологическую активность белков и нуклеиновых кислот, поэтому для нормального функционирования организма поддержание кислотно-щелочного равновесия является задачей исключительной важности. Четвертая ступень, состоящая из биокерамических шариков, выполняет функцию регулировки уровня рН воды до уровня рН крови человека.

Анионы, излучаемые турмалином, входящим в состав пятого картриджа, оказывают положительное влияние на иммунитет, эндокринную систему, очищают сосуды, заряжают плазму крови.

Стоит заметить, что система с нанофильтрами имеет достаточно высокую стоимость.

Таким образом современному человеку доступно множество способов получения вкусной, безопасной и качественной воды. Производители фильтров и систем по очистке воды предлагают выбрать и использовать наиболее эффективные из них. Диапазон цен и широкий ассортимент позволяет людям, с различным уровнем дохода, выбрать для себя подходящее устройство, и наслаждаться преимуществами чистой и полезной воды.

А какие методы и способы очистки воды применяете Вы?

Напишите об этом в комментариях!

Вне зависимости от выбранного Вами способа и метода очистки, вода, которую вы получаете в результате обработки, должна стать правильной водой . Только тогда Ваш организм сможет извлечь из нее максимум пользы.

И еще важен один момент: правильная вода должна быть доступна вам, где бы вы не находились – дома, на работе, в отпуске, в дороге…

Как сделать из Вашей воды Правильную воду – .

В воде могут содержаться ценные для промышленности, и вредные для живых существ вещества с высокой атомной массой, обладающие свойствами металлов, такие вещества называются тяжёлыми металлами.

Очистка от тяжелых металлов может быть осуществлена следующими методами:

Сорбция;
- Ионный обмен;
- Электролиз;
- Обратный осмос.

Под понятием «сорбция» понимают процесс поглощения какого-либо вещества. Этот процесс используется для очистки сточных вод и в водоподготовке. В качестве веществ, способных выделять из сточной воды загрязнения и накапливать их в себе, применяют активированный угль, золу, опилки, торф, глины и другие материалы с развитой поверхностью. Их еще называют сорбентами, а загрязнения, удаляемые из воды - сорбатом. Это весьма эффективный метод, например, при использовании в качестве загрузки шлака свинцовой плавки можно получить степень очистки воды от меди или цинка до 95-98%.

Ионный обмен - частный случай сорбции. Здесь процесс поглощения загрязнений происходит на молекулярном уровне. В жидкость добавляется среда, называемая ионитом, способная обмениваться ионами с примесями сточных вод. Иониты, которые поглощают положительные ионы, называются – катиониты, а те которые поглощают отрицательные ионы, называются аниониты. Так же они делятся по происхождению на природные и искусственные; и по составу на минеральные и органические. В качестве ионитов применяются глинистые минералы, слюды, полевые шпаты, гуминовые кислоты угля, ионообменные смолы.

Электролиз – процесс распада химических соединений (чаще солей металлов) под действием электрического тока. Очистка воды осуществляется следующим образом: в емкость с очищаемой жидкостью помещают электроды (аноды – положительно, а катоды – отрицательно заряженные). В итоге, химическая связь между соединениями разрывается, и положительные ионы начинают двигаться к катоду, а отрицательные - к аноду. Электроды могут быть изготовлены из графита, диоксида свинца, марганца, молибдена, нержавеющей стали. Минусом данного метода является высокая энергоемкость и как следствие – большая стоимость.

Для извлечения из воды ртути, одного из самого распространенного тяжелого металла, эффективно применять обратный осмос . Данный метод основан на продавливании воды через полупроницаемую мембрану, которая пропускает только воду, задерживая примеси находящиеся в воде.

Так же очистка питьевой и промышленной воды от тяжелых металлов может быть реализована реагентными методами, гальванокоагуляцией и электродиализом. Эти методы довольно трудоемки, поэтому они не получили широкого распространения в промышленности.

Вода это лучший существующий растворитель, и в природе практически не встречается чистая, полностью не включающая примесей вода.

Даже дождевая вода содержит малые количества примесей, которые она впитывает из воздуха, будь то растворенные газы или микроскопические частицы пыли.

В природной воде содержится большое количество примесей различной природы: газы, соли тяжелых металлов, галогены, органические вещества, сложные химические вещества природного и антропогенного происхождения, микроорганизмы, простейшие.

Вещества, которые имеют высокую токсичность и попадающие в организм человека с пищей, водой, воздухом, через кожу называют общим словом ксенобиотики.

Токсичность - способность вещества нанести вред организму.

Почти любое вещество может быть токсичным, безвредным, а в определенных случаях полезным.

Роль некоторых элементов из периодической таблицы химических элементов Менделеева пока не выяснены, однако с влиянием на человеческий организм большинства веществ ученым более или менее все понятно.

Главное количество вещества попадающего в организм человека в единицу времени, частота употребления, путь поступления.

Многие вещества, которые необходимо удалять в процессе водоподготовки из питьевой и технической воды в микроскопических дозах входят в состав гормонов, ферментов, принимают участие во многих микробиологических процессах происходящих внутри живого организма в процессе его жизнедеятельности.

Более 40 металлов периодической системы с атомным весом свыше 50 атомарных единиц к группе потенциально опасных веществ.

Исключению подлежат свинец, кадмий, висмут и ртуть, чья роль в происходящих биологических процессах в белковых организмах пока не ясна ученым.

Такие металлы называют тяжелыми металлами в воде.

В отрасли водоочистки и водоподготовки к тяжелым металлам в питьевой воде относят и вещества, которые строго говоря, к ним не относятся, например висмут или мышьяк.

Это происходит потому, что у этих веществ высокая токсичность даже при малых концентрациях, способность накапливаться в тканях организма и влиять на происходящие внутри организма химические процессы.

Для питьевой воды существуют утвержденные российским законодательством нормативы. Существует мнение, что часть из них устарело, нормы не соответствуют оптимальным количествам по содержанию веществ. Однако данные нормативы существуют во многих странах мира, при необходимости происходит их коррекция, и точно понятно, что нормы основаны на серьезных научных исследованиях российских, а ранее советских ученых химиков. Поэтому очистка воды от тяжелых металлов крайне необходима и важна.

Все металлы имеют нормативы по предельно допустимым концентрациям. Все специалисты в области очистки воды ориентируются на показатели ПДК СанПиН 2.1.4.1074-01.


Удаляют соли, сложные химические вещества и органические соединения, уменьшая тем самым содержание тяжелых металлов в воде. Нет универсальной технологии, позволяющей гарантированно удалять абсолютно все примеси в одном процессе. Примеси различных групп удаляются поэтапно, от очистки механических загрязнений до удаления солей жесткости и запахов.

Наиболее частый способ удаления солей тяжелых металлов, ионный обмен – процесс, в ходе которого происходит замещение одного иона на другой. Количество солей в таком процессе не уменьшается, но соли нежелательных соединений фиксируются в ионообменном материале, и удаляются из него при регенерации (если для данного ионообменного материала регенерация технологически осуществима).

Также удаляют соли тяжелых металлов в воде и некоторыми другими методами. Но вне зависимости от того, какой именно метод удаления будет основным, проектирование проекта системы водоочистки, подбор оборудования для ее надежной работы осуществляется на основании полного химического анализа исходной воды.

Для очистки водопроводной воды от тяжелых металлов, а в ряде регионов нашей страны отмечены превышения по ряду подобных соединений, используются надежные и проверенные многолетней эксплуатацией в разных регионах системы бытовой очистки воды.

На сайте можно подробно ознакомиться с преимуществами и ограничениями той или иной системы бытовой очистки воды. А звонок в нашу компанию позволит потенциальному покупателю получить исчерпывающую информацию от специалиста по доочистке воды именно в его регионе.