Теории изгиба балок и плит на упругом основании и условия их применимости к расчету гибких фундаментов. Расчет плиты, лежащей на упругом основании Расчет плит на упругом основании

Дело в том, что на сегодняшний день не существует идеальной модели упругого основания. Одной из наиболее распространенных является модель Фусса-Винклера, согласно которой опорная реакция упругого основания, другими словами - распределенная нагрузка q , действующая на балку, является не равномерно распределенной, а пропорциональной прогибу балки f в рассматриваемой точке:

q = - kf (393.1)

k = k о b (393.2)

k о - коэффициент постели, постоянный для рассматриваемого основания и характеризующий его жесткость, измеряется в кгс/см 3 .

b - ширина балки.

Рисунок 393.1 а) модель балки на сплошном упругом основании, б) реакция основания q на действующую сосредоточенную нагрузку.

Из этого можно сделать как минимум два вывода, неутешительных для человека, собравшегося по-быстрому рассчитать фундамент небольшого домика, к тому же даже основы теоретической механики и теории сопротивления материалов постигшего с трудом:

1. Расчет балки на упругом основании - это статически неопределимая задача, так как уравнения статики позволяют лишь определить суммарное значение нагрузки q (реакции основания). Распределение нагрузки по длине балки будет описываться достаточно сложным уравнением:

q/EI = d 4 f/dx 4 + kf/EI (393.3)

которое мы здесь решать не будем.

2. Помимо всего прочего при расчете таких балок необходимо знать не только коэффициент постели основания, но и жесткость балки ЕI, т.е. все параметры балки - материал, ширина и высота сечения, должны быть известны заранее, между тем при расчете обычных балок определение параметров и является основной задачей.

И что в этом случае делать простому человеку, не обремененному глубокими знаниями сопромата, теорий упругости и прочих наук?

Ответ простой: заказать инженерно-геологические изыскания и проект фундамента в соответствующих организациях. Да, я понимаю, что при этом стоимость дома может увеличиться на несколько тысяч $, но все равно это оптимальное решение в таком случае.

Если же вы, не смотря ни на что, хотите сэкономить на геологоразведке и расчете, т.е. выполнить расчет самостоятельно, то будьте готовы к тому, что придется больше средств потратить на фундамент. Для такого случая я могу предложить следующие расчетные предпосылки:

1. Как правило сплошная фундаментная плита принимается в качестве фундамента в тех случаях, когда несущая способность основания очень низкая. Другими словами грунт - это песок или глина, никак не скальные породы. Для песка, глины и даже гравия коэффициент постели, определенный опытным путем в зависимости от различных факторов (влажности, крупности зерен и др.) k o = 0.5-5 кгс/см 3 . Для скальных пород k o = 100-1500 кг/см 3 . Для бетона и железобетона k o = 800-1500 кгс/см 3 . Как видно из формулы 393.1, чем меньше значение коэффициента постели, тем больше будет прогиб балки при той же нагрузке и параметрах балки. Таким образом мы можем для упрощения дальнейших расчетов предположить, что слабые грунты не влияют на прогиб балки, точнее этим незначительным влиянием можно пренебречь. Другими словами изгибающие моменты, поперечные силы, углы поворотов поперечных сечений и прогибы будут такими же, как и у балки, загруженной распределенной нагрузкой. Результатом такого допущения будет повышенный запас прочности и чем больше будут прочностные характеристики грунтов, тем большим будет запас прочности.

2. Если сосредоточенные нагрузки на балку будут симметричными, то для упрощения расчетов реакцию упругого основания можно принимать равномерно распределенной. Основанием для такого допущения служат следующие факторы:

2.1. Как правило фундамент, рассматриваемый как балка на упругом основании, в малоэтажном строительстве имеет относительно небольшую длину - 10-12 м. При этом нагрузка от стен, рассматриваемая как сосредоточенная, в действительности является равномерно распределенной на участке, равном ширине стен. Кроме того балка имеет некоторую высоту, на первом этапе расчета не учитываемую, а между тем даже сосредоточенная нагрузка, приложенная к верху балки, будет распределяться в теле балки и чем больше высота балки, тем больше площадь распределения. Так например для фундаментной плиты высотой 0.3 м и длиной 12 м, рассматриваемой как балка, на которую опираются три стены - две наружных и одна внутренняя, все толщиной 0.4 м, нагрузки от стен более правильно рассматривать не как сосредоточенные, а как равномерно распределенные на 3 участках длиной 0.4 + 0.3·2 = 1 м. Т.е. нагрузка от стен будет распределена на 25% длины балки, а это не мало.

2.2. Если балка лежащая на сплошном упругом основании имеет относительно небольшую длину и к ней приложено несколько сосредоточенных нагрузок, то реакция основания будет изменяться не от 0 в начале длины балки до некоего максимального значения посредине балки и опять до 0 в конце длины балки (для варианта показанного на рис. 393.1), а от некоторого минимального значения до максимального. И чем больше сосредоточенных нагрузок будет приложено к балке относительно небольшой длины, тем меньше будет разница между минимальным и максимальным значением опорной реакции упругого основания.

Результатом принятого допущения будет опять же некоторый запас прочности. Впрочем в данном случае возможный запас прочности не превысит нескольких процентов. Например, даже для однопролетной балки, на которую действует распределенная нагрузка, равномерно изменяющая от 1.5q в начале балки до 0.5q в середине балки и снова до 1.5q в конце балки (см. статью "Приведение распределенной нагрузки к эквивалентной равномерно распределенной") суммарная нагрузка составит ql, как и для балки, на которую действует равномерно распределенная нагрузка. Между тем максимальный изгибающий момент для такой балки составит

М = ql 2 /(8·2) + ql 2 /24 = 10ql 2 /96 = ql 2 /9.6

Это на 20% меньше, чем для балки, на которую действует равномерно распределенная нагрузка. Для балки, изменение опорной реакции которой описывается достаточно сложным уравнением, особенно если сосредоточенных нагрузок будет много, разница будет еще меньше. Ну и не забываем про п.2.1.

В итоге при использовании данных допущений задача расчета балки на сплошном упругом основании максимально упрощается, особенно при симметричности приложенных нагрузок, несимметричные нагрузки приведут к крену фундамента и этого в любом случае следует избегать. Более того на расчет практически не влияет количество приложенных сосредоточенных нагрузок. Если для балки на шарнирных опорах вне зависимости от их количества должно соблюдаться условие нулевого прогиба на всех опорах, что увеличивает статическую неопределимость балки на количество промежуточных опор, то при расчете балки на упругом основании достаточно рассматривать прогиб, как нулевой, в точках приложения крайних сосредоточенных нагрузок - наружных стен. При этом прогиб под сосредоточенными нагрузками - внутренними стенами определяется согласно общих уравнений. Ну а определить осадку фундамента в точках, где прогиб принят нулевым, можно, воспользовавшись существующими нормативными документами по расчету оснований и фундаментов.

А еще можно достаточно просто подобрать длину консолей балки таким образом, чтобы прогиб и под внутренними стенами был нулевым. Пример того, как можно воспользоваться данными расчетными предпосылками, рассказывается

Программа Плита построена на методе конечных элементов, однако пользователь видит это лишь в сетчатых картинках на поле плиты, разбивка на элементы происходит без его участия. Пользователь определяет геометрию плиты, нагрузки, опоры, расставляет сваи, как это делается на листе бумаги или в AUTOCAD, с помощью курсора мышки и щелчка по кнопке. Процедура задания исходных данных в программе приносит удовольствие своей простотой, не требует специальных навыков работы с компьютером, даже опыта расчета конструкций. Тем не менее, работать должен опытный расчетчик. Программа Плита только удобный инструмент, расчетная схема всегда только математическая модель, которую можно изменять, добиваясь требуемого результата.

В результате расчета на программе Плита выводятся цветные поля перемещений, напряжений и армирования плиты с палитрами по значениям цвета. Вычерчиваются поля продольной и поперечной арматуры, производится расчет на продавливание точечной нагрузкой и опорой (колонной, сваей). Производится расчет осадки и крена. Пользователь Плиты одним расчетом получает полный спектр результатов, требуемый для проектирования плиты.

Программа Плита позволяет рассчитать плоские железобетонные плиты произвольной геометрии в плане, с ребрами жесткости, утолщениями и дырами, любым типом нагрузок, на основании в виде косых слоев грунта, свай рассчитываемой программно жесткости, колоннах или опорах произвольной конфигурации. Возможен учет карстовых явлений в виде воронок, которые следует просто нарисовать, автоматически рассчитывается коэффициент постели по 5 различным методикам, пользователю предлагается только выбрать метод. Имеется множество мелких удобств, которые можно оценить, лишь начав работать с программой.

Возможности программы:

  • расчет плит на упругом основании, задаваемом послойно;
  • возможность учёта различия геологических условий под участками плиты;
  • расчет осадки и крена плит на упругом основании;
  • расчет плит на жестких, шарнирных, линейных и полосовых опорах;
  • расчет плит на упругих опорах, свайном основании;
  • расчёт осадки и крена свайной плиты;
  • вычерчивание цветных полей перемещений, напряжений, продольного армирования;
  • вычерчивание полей поперечного армирования и армирования на продавливание;
  • расчет жесткости свайных опор;
  • автоматическая равномерная или оптимальная разбивка свайного поля;
  • определение несущей способности свай (стоек, висячих забивных, буровых, набивных);
  • автоматическое определение нагрузки на опору (сваю) с учётом жёсткости плиты;
  • расчёт плит переменной толщины, с ребрами жесткости и отверстиями;
  • учёт карстовых явлений.

Скажите, пожалуйста, на каком основании назначаются жёсткости для 51 КЭ?

Зачем же так мучаться – заполнять таблицу в кроссе нужно 1 раз, задать примерные габариты площадки, скаважины и сохранить файл кросса, а уж когда создадите расчетную схему в scsd, выберете созданную вами площадку.
И шаг номер 2 вызывает сомнения – первоначально коэффициенты упругого основания можно назначить “от балды” и всем элементам плиты одинаковые, для того и нужен КРОСС, чтобы их вычислить путем нескольких итераций

На вопрос про жесткости я не смогу дать квалифицированного ответа. Это взято из опыта расчетов многих людей как лучшее решение. Такие варианты, как жестко защемить в двух или трех точках или оставить плиту вообще без опоры тоже имеют право на жизнь. В первом случае мы, возможно, в точках защемления получим пики армирования, во втором случае – большую осадку или ошибки при расчете. Все эти варианты сопоставимы друг с другом.

Анонимный ответ на анонимный комментарий. В общих чертах описал тоже самое. Да я мучился, пока не проникся тонкостями, поэтому и поделился своим опытом. Почему шаг 2 вызывает сомнение? Если потому, что “первоначально. коэффициент можно назначить от балды. “, то позволю себе заметить, что существуют множество методик приведения нагрузки на фундаментную плиты. Описанная мною во втором шаге методика распределенной нагрузки на плиту ранее до появления САПР была популярна и у неё до сих пор есть поклонники. Поэтому проанализировать результаты расчета по ней всегда полезно. За частую результаты её не отличаются от результатов бесконечных, описанных также во втором шаге, итераций.

для 51 элемента жесткость назначается от коэ постели элемента 0,7С1 х А^2
C1 коэф постели
А площадь элемента

Cпасибо за информацию.

К вопросу о жесткостях 51 КЭ см. “Расчетные модели сооружений и возможность их анализа” А.В. Перельмутер В. И. Сливкер 2011 г. стр. 449-450


Расчет фундаментной плиты в SCAD. Расчет фундаментной плиты. Расчет в КРОСС. Расчет в SCAD

6.5.7. Расчет конструкций на упругом основании по таблицам (ч.1)

Полностью расчет балок и плит на упругом основании по гипотезе упругого полупространства или сжимаемого слоя по таблицам готовых расчетных величин приведен в книге . Здесь даны только основные сведения по классификации балок и плит для выбора нужных таблиц, а также таблицы для наиболее важных случаев расчета.

Расчет балок (полос) в условиях плоской задачи. В таблицах даны реактивные давления, поперечные силы и изгибающие моменты для полос, принимаемых за абсолютно жесткие, для полос конечной длины и жесткости, бесконечных и полубесконечных. Предусмотрены случаи равномерной нагрузки и нагрузки в виде сосредоточенной силы или момента, приложенных в любом сечении.

Полоса считается абсолютно жесткой, если показатель ее гибкости t (величина безразмерная) удовлетворяет неравенству

где E и ν - модуль деформации и коэффициент Пуассона грунта, E и ν - модуль упругости и коэффициент Пуассона материала полосы, I - момент инерции сечения полосы, l - полудлина полосы, h - высота, b ‘ - ширина, равная 1 м.

Второе приближенное значение для t в формуле (6.131) относится к полосам прямоугольного сечения. Табл. 6.8 служит для расчета жестких полос для наиболее важного случая нагрузки сосредоточенной силой, приложенной в любом сечении полосы.

Таблица имеет два входа: по α , приведенным к полудлине полосы l - абсциссы точек приложения нагрузки, и по ξ , приведенным к l - абсциссы сечений, для которых устанавливается расчетная величина. Начало отсчета - середина полосы, при этом принимается, что для сечений, расположенных правее середины полосы, значения ξ положительны, а левее - отрицательны. Величины α и ξ округляются до первого знака после запятой.

В таблице приведены ординаты безразмерных величин, которые позволяют определять истинные значения реактивных давлений р , поперечных сил Q и изгибающих моментов М с помощью равенств:

(подразумевается, что сила Р дана в кН, а полудлина - в м).

В таблицах для звездочкой отмечены значения слева от силы Р . Справа значения будут. Если сила приложена в левой половине полосы в таблице для, все значения меняют знак на обратный.

Полосы считаются имеющими конечную длину и жесткость в случае, если их показатель гибкости удовлетворяет неравенству

(подробные таблицы для этого случая приведены в книге ).

Наконец, длинные полосы, когда t > 10, при расчете приближенно принимаются либо за бесконечно длинные, либо за полубесконечные. Полоса считается бесконечной, когда сила Р приложена на расстоянии a l , от левого конца полосы и на расстоянии a r от правого конца, удовлетворяющих неравенствам:

где L - упругая характеристика балки, м:

В случае если неравенство (6.134) справедливо лишь для или только для a r , полоса называется полубесконечной. В табл. 6.9 приведены значения безразмерных величин, для бесконечной полосы, а в табл. 6.10 - для полубесконечной. Правила пользования этими таблицами те же, что и табл. 6.8, с той лишь разницей, что в формулах (6.132) величина l должна быть заменена величиной L .

Если полоса загружена рядом сосредоточенных сил, то определяются эпюры от каждой силы в отдельности, а затем они суммируются.

В книге приведены также таблицы для случая нагрузки изгибающим моментом m .

Расчет балок в условиях пространственной задачи . В этом случае метод расчета также зависит от показателя гибкости балки

где а и b - полудлина и полуширина балки.

Балка принимается за жесткую, если показатель гибкости t ≤ 0,5. Балка принимается за длинную, если

где L определяется равенством (6.135),

и удовлетворяются условия:

» 0,15 ≤ β ≤ 0,3 λ > 2

Остальные балки рассчитываются как короткие, т.е. имеющие конечную длину и жесткость.

Жесткие балки рассчитываются при замене действительной нагрузки на балку эквивалентной в виде суммарной вертикальной нагрузки Р и момента m , приложенных в середине балки.

Расчет плиты на упругом основании
6.5.7. Расчет конструкций на упругом основании по таблицам (ч.1) Полностью расчет балок и плит на упругом основании по гипотезе упругого полупространства или сжимаемого слоя по таблицам готовых расчетных величин приведен в книге . Здесь даны только основные сведения по классификации балок и плит для выбора нужных таблиц, а также таблицы для наиболее важных случаев расчета.


Расчет балок и плит на упругом основании за пределом упругости (пособие для проектировщиков). Синицын А.П. 1974

В книге рассматриваются приближенные методы расчета балок и плит, расположенных на упругом основании, за пределом упругости. Кратко изложены основные принципы теории предельного равновесия, рассмотрена задача определения предельной несущей способности балки на упругом основании при различной нагрузке. Показано определение предельной нагрузки для рам и ростверков с учетом влияния упругого основания. Дано решение задач для предварительно напряженной балки. Рассмотрено влияние двухслойного основания. Решены задачи, относящиеся к плитам, расположенным на упругом основании, при сосредоточенной нагрузке в центре, на краю и в углу плиты. Сделан расчет предварительно-напряженной и трехслойной плиты. В конце работы приводятся экспериментальные данные, относящиеся к балкам и плитам, а также сделано сравнение с теоретическими результатами. Книга предназначена для инженеров-проектировщиков и может быть полезна студентам старших курсов строительных вузов.

Предисловие к первому изданию
Предисловие ко второму изданию
Введение

Глава 1. Общие принципы расчета
1.1. Условия перехода балок на упругом основании за предел упругости
1.2. Предельное равновесие для изгибаемых элементов
1.3. Общий случай
1.4. Образование пластических областей в основании
1.5. Условия создания фундаментов наименьшего веса

Глава 2. Балка на упругом полупространстве
2.1. Наибольшая нагрузка в упругой стадии
2.2. Распределение реакций за пределом упругости
2.3. Величина предельной нагрузки
2.4. Две сосредоточенные силы
2.5. Три сосредоточенные силы
2.6. Равномерно распределенная нагрузка
2.7. Балка переменного сечения
2.8. Ростверк из двух перекрестных балок
2.9. Трехслойная балка
2.10. Сосредоточенная сила, приложенная несимметрично
2.11. Сосредоточенная сила на краю балки
2.12. Предварительно-напряженная балка
2.13. Предварительно-напряженная кольцевая балка
2.14. Бесконечно длинная балка
2.15. Простая рама
2.16. Сложная рама

Глава 3. Балка на двухслойном основании
3.1. Наибольшая нагрузка в упругой стадии
3.2. Определение предельной нагрузки
3.3. Применение групповых эпюр
3.4. Предварительно – напряженная балка на слое конечной толщины
3.5. Ростверки на упругом слое

Глава 4. Балка на слое переменной жесткости
4.1. Составление дифференциальных уравнений
4.2. Учет влияния собственного веса
4.3. Выбор расчетной схемы предельного состояния
4.4. Пример определения предельной силы
4.5. Расчет фермы слоистого перекрытия
4.6. Расчет слоистой рамы
4.7. Балки на нелинейном основании
4.8. Пример расчета балки на нелинейном основании
4.9. Регулирование реакций основания
4.10. Определение оптимальной жесткости для балки

Глава 5. Расчет плит
5.1. Приближенное решение для бесконечной плиты
5.2. Бесконечно жесткая квадратная плита
5.3. Нагрузка в углу плиты
5.4. Квадратная плита на двухслойном основании
5.5. Предварительно-напряженная плита
5.6. Влияние местных и общих деформаций плиты за пределом упругости
5.7. Трехслойная плита
5.8. Нагрузка на краю плиты
5.9. Сборные плиты

Глава 6. Применение ЭВМ для определения предельного состояния основания
6.1. Метод конечных элементов
6.2. Предельная нагрузка высокой фундаментной балки
6.3. Определение пластических областей в основании
6.4. Высокая фундаментная балка на упругопластическом основании
6.5. Предельная нагрузка балки, определяемая из условия образования пластических областей в основании
6.6. Использование балочных конечных элементов
6.7. Вычисление предельных смещений и нагрузок

Глава 7. Предельные осадки каркасных многоэтажных зданий
7.1. Основные расчетные положения
7.2. Метод решения задачи и составление общих уравнений
7.3. Особенности расчета, зависящие от конструкции фундамента (сплошные плиты, ленточные фундаменты, отдельные столбы)
7.4. Примеры расчета

Глава 8. Результаты испытаний
8.1. Рамы, ростверки и плиты
8.2. Сравнение теоретических и экспериментальных данных
8.3. Модуль деформации основания
Список литературы

Балки и плиты на упругом основании используются главным образом как расчетные схемы для фундаментов, которые являются основными элементами, обеспечивающими общую прочность и надежность сооружения.

К расчету фундамента, как правило, предъявляются повышенные требования в отношении его состояния в процессе эксплуатации сооружений. Небольшие отклонения от установленных величин в области деформаций или напряжений, которые часто имеются у других конструктивных элементов, для фундамента оказываются совершенно недопустимыми.

Это по существу правильное положение иногда приводит к тому, что фундаменты проектируются с излишним запасом прочности и оказываются неэкономичными.

Для оценки величины несущей способности фундамента необходимо изучить распределение сил в таких конструкциях за пределом упругости, только тогда можно будет установить правильно те наиболее рациональные размеры, при которых обеспечивается необходимая надежность сооружения при его минимальной стоимости.

Трудность задачи о расчете балок на упругом основании за пределом упругости состоит в том, что нельзя непосредственно, без специальных приемов, применить общий метод расчета конструкций по предельному равновесию.

Метод предельного равновесия, созданный в результате работ наших отечественных ученых профессоров В. М. Келдыша, Н.С. Стрелецкого, А.А. Гвоздева, В.В. Соколовского, Н.И. Безухова, А.А. Чираса, А.Р. Ржаницына, А. М. Овечкина и многих других, получил всеобщее признание и широко применяется на практике. В иностранной литературе этот метод также используется и освещается в работах Б.Г. Нила, Ф.Г. Ходжа, Р. Хилла, М. Р. Горна, Ф. Блейха, В. Прагера, И. Гийона и др., часть этих трудов переведена на русский язык.

Библиотека: книги по архитектуре и строительству
Архитектурно-строительная библиотека Totalarch. Книга: Расчет балок и плит на упругом основании за пределом упругости (пособие для проектировщиков). Синицын А.П. Стройиздат. Москва. 1974. В книге рассматриваются приближенные методы расчета балок и плит, расположенных на упругом основании, за пределом упругости. Кратко изложены основные принципы теории предельного равновесия,


5.11.1 Для расчета плитных фундаментов на упругом основании рекомендуется применять следующие расчетные модели:

а) метод местных упругих деформаций,

б) метод линейно-деформируемого полупространства,

в) метод упругого слоя на несжимаемом основании или с переменным модулем деформации грунта по его глубине.

Метод а), как правило, следует применять для слабых, малопрочных оснований, б) и в) - для мало- и среднесжимаемых оснований при расчетах гибких конструкций: балок, лент (в т. ч. перекрестных) и массивных плит.

5.11.2 Фундаменты на упругом основании следует рассчитывать с учетом их гибкости. Балки
и ленты, при соотношении их длины и ширины l /b 1, считаются абсолютно жесткими в поперечном направлении, а при 7 £ l /b £ 20 и t £ 1 - в продольном направлении. Показатель гибкости балок (лент), учитывающий жесткость балки и основания, определяется по формуле (5.69), для плит в форме круга - по формуле (5.70), многоугольника, при l /b

где Е и n - соответственно модуль деформации, МПа, и коэффициент Пуассона грунта,

Е 1 , n 1 - модуль упругости, МПа, и коэффициент Пуассона материала фундамента,

I - момент инерции поперечного сечения фундамента, м 4 ,

l и h - длина и высота фундамента, м,

R - радиус плиты, м.

5.11.3 Расчет фундаментов на упругом основании производится в зависимости от модели основания по 5.11.1 и условий его работы численными методами по соответствующим программам, с использованием ПЭВМ, или расчетно-практическими методами по соответствующим таблицам .

Расчет плитных фундаментов, загруженных различными нагрузками (рисунок 5.13), с использованием таблиц, производится по показателю гибкости a:

где n - коэффициент поперечных деформаций грунта,

Е - модуль деформации грунта, МПа,

L и b - длина и ширина балки, м,

В - жесткость балки, МПа∙м 4 .

При загружении балки несколькими силами суммарные усилия находят сложением их одноименных ординат. Расчет плитного фундамента на упругом основании приведен в примере Г.7 приложения Г.

Рисунок 5.13 - Схемы загружения балок различными нагрузками:

а) равномерно распределенной,

б) сосредоточенной,

Принципы расчета плитных фундаментов на упругом основании
Принципы расчета плитных фундаментов на упругом основании 5.11.1 Для расчета плитных фундаментов на упругом основании рекомендуется применять следующие расчетные модели: а) метод местных

В статье рассмотрены некоторые вопросы, связанные с производством в России сталей различных марок и их использованием для строительства металлических конструкций. Ежегодно в нашей стране для строительства расходуется стали обычной прочности а также повышенной и высокой прочности десятки миллионов т/г. Приведены важные для строительных сталей данные по химическим составам и физико-механическим характеристикам. Рассматриваются некоторые особенности, которые необходимо учесть при использовании европейских строительных сталей.

В статье рассматриваются проблемы расчета зданий и сооружений на землетрясения. Исследуются вынужденные колебания линейных и нелинейных систем с одной степенью свободы при нестационарных воздействиях. Приводятся результаты расчета многоэтажного монолитного здания в нелинейной динамической постановке на сейсмическое воздействие. Анализируются расчетные положения норм проектирования зданий и сооружений для строительства в сейсмических районах.

Решение внутренней и внешней задач Лэмба осуществляется с помощью метода конечных элементов. Исследуются плоская и пространственная модели. В качестве источников возмущений во внутренней задаче Лэмба рассматриваются центр расширения, двойная сила без момента, момент и чистый сдвиг. Временные зависимости источников возмущения приняты в виде функции Хэвисайда. Анализируются смещения на свободной границе полупространства или полуплоскости. Исследуется влияние коэффициента Пуассона. Решение осуществляется с помощью явной разностной схемы второго порядка точности.

Приведены формулы для вычисления внутренних усилий в мембранной панели, полученные на основании многовариантных расчетов, проведенных с учетом геометрической нелинейности системы и податливости опорного контура при центральном и эксцентричном креплении мембраны к опорному контуру.

В работе дается теоретическое обоснование возможности применения метода Ритца для расчета балок и плит на упругом основании, где использована идея А.И. Цейтлина для выбора координатных функций, что в ряде случаев дает возможность получить точное решение в форме бесконечного ряда. При решении интегральных уравнений применяются спектральные соотношения метода ортогональных многочленов. Рассматриваются модели упругого основания Винклера. Все расчеты выполнены в традиционной постановке, т.е. без учета влияния касательных напряжений на контакте конструкции с упругим основанием и упругой работой материалов конструкции и основания. Приведены примеры расчета для стержня и кольцевой плиты на основании Винклера.

Во второй части работы дается теоретическое обоснование возможности применения метода Ритца для расчета балок и плит на упругом основании с распределительными свойствами. При решении интегральных уравнений применяются спектральные соотношения метода ортогональных многочленов. Все расчеты выполнены в традиционной постановке, т.е. без учета влияния касательных напряжений на контакте конструкции с упругим основанием и упругой работой материалов конструкции и основания. Приведены примеры расчета для балки на упругой полуплоскости и круглой осесимметрично нагруженной плиты на упругом полупространстве.

В настоящей работе продемонстрировано применение инерционной механической динамической модели грунтовой среды, при ее практической реализации в расчете сооружения. С целью унификации оборудования расчет поэтажных спектров откликов при сейсмических воздействиях выполняется при возможно широком диапазоне вариации грунтов основания сооружения.

ФОРМИРОВАНИЕ РАСЧЕТНЫХ ПАРАМЕТРОВ МОДЕЛЕЙ СВАЙНЫХ ФУНДАМЕНТОВ С УЧЕТОМ ГЕОМЕТРИЧЕСКОЙ ФОРМЫ ПОПЕРЕЧНЫХ СЕЧЕНИЙ И ЭФФЕКТОВ ИХ ВЗАИМОДЕЙСТВИЯ С ГРУНТОВОЙ СРЕДОЙ Страницы 63-71 УДК

Разработана расчетная модель системы сооружение-основание с учетом наиболее существенных факторов, определяющих напряженно-деформированное состояние как конструктивных элементов свайных фундаментов, так и сооружения. Полученные результаты расчетов демонстрируют хорошую сходимость по определению осадки сооружения, выполненных двумя различными методами.