Технологии водоподготовки, самые новые и современные. Какая технология фильтрации воды лучшая? Очистка воды в бытовых условиях Современное состояние и развитие технологий водоподготовки

Промышленная водоподготовка – важный этап в производстве многих видов продукции. Ежедневно потребляя различные напитки, мы даже не задумываемся о том, сколько этапов фильтрации проходит вода, из которой они изготовлены. Не менее важна и промышленная очистка сточных вод, вместе с которыми в природные источники попадает масса вредных химических веществ. Промышленной подготовке подвергается и вода, которая подается в центральные системы водоснабжения.

С каждым годом проблема нехватки питьевой воды встает все острее. Уже сейчас порядка 1/6 части жителей Земли не имеют доступа к ней. Среди причин дефицита пресной воды:

  • высокий расход, превышающий потребности;
  • растущая численность населения;
  • таяние ледников;
  • загрязнением поверхностных вод бытовыми и промышленными отходами.

Основными источниками загрязнения являются коммунальные и промышленные стоки. Первые содержат в себе различные вредоносные бактерии, способные спровоцировать серьезные заболевания. Вторые – скопление всевозможных химических веществ: кислот и щелочей, тяжелых металлов, нефтепродуктов и т.д.

Промышленная очистка воды подразделяется на водоподготовку и водоочистку. Под водоподготовкой понимают очищение и обеззараживание воды в целях ее . На этапе водоподготовки происходит осветление, умягчение, дегазация, дезодорация и дезинфекция.

Под осветлением понимают удаление различных взвешенных и растворенных частиц, которые вызывают цветность и мутность. Умягчению способствует выведение солей кальция и магния. Благодаря дегазации из жидкости устраняются различные растворенные газы, например, сероводород. Дезинфекция приводит к уничтожению патогенной микрофлоры, а на этапе дезодорация уходят посторонние неприятные запахи.

Для достижения вышеперечисленных целей используют способы трех групп:

  1. Физические.
  2. Химические.
  3. Физико-химические.

Физические способы (методы) очистки

Физические способы промышленной очистки воды удаляют примеси без использования реагентов. В основе таких методов лежат разнообразные физические явления. К данной группе относят:

  1. Механическую фильтрацию.
  2. Ультрафильтрацию.
  3. Нанофильтрацию.
  4. Микрофильтрацию.

Механическая фильтрация воды

Промышленная очистка воды механической фильтрацией является самым простым методом, проводят ее на первичном этапе водоподготовки. Механические фильтры подразделяют на фильтры грубой и фильтры тонкой очистки.

Фильтры грубой очистки устанавливаются на этапе водозабора. Принцип работы состоит в том, что сито препятствует прохождению крупных частиц примесей: песка, глины, органики, солей кальций и магния. В народе такие фильтры получили название «грязевики». Они являются обязательным элементом водоподготовки. Благодаря им уничтожается цветность и мутность, а также уходят неприятные запахи.

Фильтры тонкой очистки в основе имеют картридж с сорбентом, проходя через который вода очищается от различных газов, химических соединений, некоторых микроорганизмов.

Среди методов физического воздействия особую популярность приобрели мембранные технологии. Основное отличие таких фильтров друг от друга – пропускная способность мембраны.

Системы обратного осмоса

Наиболее эффективной мембранной технологией является водоподготовка посредством . Размер пор в обратноосмической мембране составляет менее 0,0001 мкм. Такая мембрана пропускает молекулы воды и кислорода, задерживая при этом различные примеси. Обратноосмические фильтры способны очищать воду на молекулярном уровне практические до состояния дистиллированной.

К мембране в установках обратного осмоса раствор должен подходить очищенным от механических примесей. Поэтому системы обратно осмоса состоят из нескольких элементов, основные из них:

  1. Фильтр-предочистки, который удаляет первичную грязь.
  2. Фильтр тонкой очистки с сорбирующим материалом.
  3. Мембрана.
  4. Минерализатор. Помимо вредных загрязнений обратноосмическая мембрана уничтожает и необходимые человеку минералы, баланс которых восстанавливает минерализатор. Помимо данного картриджа в систему могут быть добавлены ионизатор и умягчающий блок.

К недостаткам данного способа относятся низкая производительность, габаритность установки и потеря воды, которая сливается с примесями.

Нанофильтрация

Второе место по пропускной способности занимает мембрана нанофильтрации, размер пор которой составляет 0,001-0,002 мкм. По сути, данные фильтры являются разновидностью обратного осмоса, очищают от бактерий и вирусов, солей жесткости, нитритов, нитратов и других примесей.

Применяется в пищевой, фармацевтической, лакокрасочной и нефтехимической промышленности.

Преимуществом данного метода в отличие от обратного осмоса является сохранение в процессе очистки полезных минералов. Именно поэтому, вода, очищенная по данной технологии, является более предпочтительной в производстве напитков.

К тому же, процесс нанофильтрации более экономичен , поскольку протекает при меньшем давлении.

Ультрафильтрация

Способ ультрафильтрации по принципу действия схож с системами обратного осмоса. Вода проходит через мембрану, которая задерживает микроорганизмы, водоросли, взвешенные частицы, способствует устранению мутности и цветности. Величина пор такой мембраны составляет 0,002…0,1 мкм, что больше размера пор в мембранах обратного осмоса и нанофильтрации. Ультрафильтрация не способствует удалению солей металлов, за счет чего вода нуждается в дополнительном смягчении.

Выше мы сказали, что данный метод по принципу действия схож с обратным осмосом, но есть и отличия.

  1. Мембрана в ультрафильтрации состоит многоканальных волокон, которые изготавливаются из модифицированного полиэстерсульфона. Число волокон составляет несколько десятков тысяч. Мембрана обратного осмоса изготовлена из синтетических материалов и представляет цилиндр из смотанной в рулон пленки.
  2. При ультрафильтрации загрязнения остаются внутри мембраны. В случае обратного осмоса после очистки из мембраны выходят два потока воды. Первый – очищенная жидкость, второй – концентрат, который сливается. Таким образом, в обратноосмических системах при очистке теряется до 1/3 воды.
  3. Ультрафильтрация в отличие от обратного осмоса не удаляет соли жесткости.

Технологическая цепочка ультрафильтрации

  1. Жидкость проходит через фильтр грубой очистки для удаления механических загрязнений, которые могут повредить мембрану.
  2. Затем взаимодействует с мембраной.
  3. Минуя модуль, вода поступает в бак чистой воды, который также называется баком обратной промывки – вода из него используется для промывки мембран от поверхностных загрязнений.

Преимуществами ультрафильтрации являются:

  • компактность оборудования;
  • максимальная дезинфекция и удаление взвеси;
  • не использование химических реагентов, хотя иногда на этапе подачи воды в систему очистки в нее могут добавлять коагулянты.

Микрофильтрация

Из мембранных методов микрофильтрация обладает модулем с самыми большими порами, размер которых составляет 0,1 до 1 мкм. Часто используется в качестве предварительного этапа очистки перед обратным осмосом или нанофильтрацией, максимально очищает от механических примесей.

Химические способы (методы) очистки воды

Принцип действия химических методов заключается в добавлении в воду специальных реагентов, которые способствуют ее очистке.

Хлорирование

Обеззараживающее воздействие хлора было обнаружено еще в 19 веке. В 1846 врачи одного из госпиталей Вены стали ополаскивать руки водой с хлором. Так было положено начало применения хлора в качестве дезинфектора.

Хлор является сильным окислителем, взаимодействуя с водой, образует хлорноватистую кислоту, которая и уничтожает бактерии. Для достижения эффекта необходимо обеспечить контакт воды с хлором минимум на 30 мин. Эффект от воздействия хлорноватистой кислоты может сохраняться еще долгое время после непосредственной обработки, для этого необходимо ввести хлор в избытке. Доза реагента в каждом случае рассчитывается индивидуально. Важно не переборщить с избытком, поскольку в большом количестве хлор способен привести к проблемам в работе организма, особенно опасны соединения, образуемые данным веществом. Например, тригалометаны вызывают симптомы астмы.

Различают несколько видов хлорирования:

  • предварительное;
  • финишное

Предварительное хлорирование осуществляется на этапе водозабора. Цель реагента на этом этапе не только уничтожить бактерии, но и вывести металлы из воды путем их окисления, также хлор дезинфицирует очистное оборудование.

Финишное хлорирование применяется на последней стадии подготовки в целях обеззараживания.

В зависимости от дозы вводимого реагенты хлорирование бывает:

  • нормальное;
  • перехлорирование;
  • комбинированное.

Нормальное хлорирование используется для очищения воды при хороших санитарных и химико-физических подателей.

Перехлорирование применяют в случае сильной зараженности источников водозабора, когда нормальное хлорирование бессильно перед патогенной микрофлорой. Дозу реагента вводят в избытке, который может привести к изменению органолептических показателей воды. Остаточный хлор удаляют путем дехлорирования. Для этого используют методы безнапорной аэрации, коагуляции или фильтрации воды через активированный уголь.

Комбинированные методы подразумевают обработку воды хлором в сочетании с другими реагентами: серебром, медью, магнием и т.д. Применяются для повышения воздействия хлора, а также обеспечения пролонгирующего эффекта.

К достоинствам хлорирования относятся:

  • эффективность;
  • простота в использовании;
  • экономичность способа;
  • комплексное в очищении воды.

Среди недостатков можно выделить:

  • серьезные требования к хранению и перевозке хлорсодержащих соединений;
  • образование посторонних соединений, которые в случае попадания в человеческий организм представляют серьезную угрозу;
  • устойчивость ряда микроорганизмов к воздействию хлора.

Озонирование

Озонирование является одним из современных методов водоподготовки и очистки сточных свод. Применяется в пищевой, химический и медицинской промышленности.

Озон является сильным окислителем, разрушающе воздействует на бактерии, вирусы, грибки, металлы и различные химические соединения, благодаря чему способствует обесцвечиванию, дезодорации и обезвреживанию воды. Доказано, что большинство известных микроорганизмов не устойчивы к влиянию газа.

Обладая коротким периодом распада, озон не выпадает в осадок, а преобразуется в кислород, что делает воду полезной. Почти мгновенный распад молекул газа в то же время является и серьезным недостатком озонирования, поскольку уже через 15-20 минут после обработки возможно повторное заражение воды. Некоторые источники свидетельствуют о том, что озон способствует «пробуждению» спящих микроорганизмов.

К существенным недостаткам метода относятся:

  1. Коррозионная активность воды, обработанной озоном.
  2. Опасность в случае передозировки реагентом и серьезная техника безопасности в процессе очистки.
  3. Высокая стоимость специальной установки – озонатора.

Обезжелезивание

Отдельного внимание заслуживает оборудование для обезжелезивания, поскольку железо в растворенном состоянии засоряет промышленное оборудование, в результате чего оно быстро ломается. В основе фильтров обезжелезивания используется специальный материал «Greensand», который представляет собой мелкозернистый песок, покрытый сверху диоксидом марганца. Именно диоксид магния и окисляет молекулы железа, которые затем выпадают в осадок. Фильтр обезжелезивания является неотъемлемой частью современных установок фильтрации воды.

Физико-химические способы очистки воды

Физико-химические способы объединяют в себе очистку реагентами и механическое удаление примесей. К наиболее распространенным способам данной группы относятся:

  • адсорбация;
  • коагуляция;
  • флотация.

Адсорбация

Под адсорбации понимают процесс поглощения молекул загрязнения поверхностью адсорбента – твердого тела с пористой поверхностью. Одним их самым популярных адсорбентов является активированный уголь, который способен очистить воду от углеводорода, нефтепродуктов, хлора и фосфора, а также стимулировать разложение озона и фосфора.

Часто фильтры на основе активированного угля используются для итоговой очистки воды. Являются незаменимым элементом практически любой системы фильтрации. К недостаткам угольных фильтров относят быстрое засорение картриджа, что требует его частой замены.

Разновидностью адсорбации является ионный обмен. Фильтры на основе ионного обмена имеют в своем составе картридж со смолой, которая содержит ионы натрия. Проходя через такой фильтр, вода с повышенным содержанием солей умягчается. Соли вода замещают готовые к обмену ионы натрия, благодаря чему вода после прохождения через такой фильтр получается мягкой и насыщенной натрием.

К сожалению, ионообменные фильтры быстро засоряются и требуют частой замены картриджей.

Коагуляция

Метод коагуляции основывается на том, что специальные вещества – коагулянты, притягивают к себе загрязнения – соли металлов, песок, глину, а затем в виде хлопьев выпадают в осадок. После отстаивания такая вода либо подвергается дальнейшей очистке посредством фильтрации, либо сливается. Метод получил широкое распространение в очистке на промышленных предприятиях

В роли коагулянтов могут быть сернокислый алюминий, сернокислое и хлорное железо, алюмокалиевые квасцы, алюминат натрия.

Разновидностью коагуляции является флокуляция. В отличие от коагуляции, слипание частиц происходит не только в момент их непосредственного соприкосновения, но и в процессе опосредованного соприкосновения молекул.

Флотация

Метод флотации активно используют для очистки сточных вод в промышленности. Эффективен при . Принцип действия основывается на добавлении в воду диспергированного воздуха, под воздействием которого молекулы загрязнений скапливаются на поверхности воды в виде белой пены, после чего удаляются специальным оборудованием. После флотации вода подвергается дополнительной очистке посредством сорбции.

К достоинствам флотации относят:

  1. Экономичность метода.
  2. Простоту конструкции.
  3. Быстроту очистки сточных вод.
  4. Возможность удаления нефтепродуктов.

Промышленные фильтры для очистки воды: виды, отличия, цены

Выше мы много сказали про методы промышленной водоподготовки и очистки сточных вод. Попытаемся классифицировать их в зависимости от вида загрязнения.

  1. Удаление механических примесей – механические и сорбционные фильтры, микрофильтрация.
  2. Обеззараживание – все мембранные методы, кроме микрофильтрации (обратный осмос, нанофильтрация, ультрафильтрация), озонирование.
  3. Обезжелезивание – хлорирование, озонирование, материал Greensand
  4. Очистка от сероводорода – напорная и безнапорная аэрация, хлорирование, озонирование, адсорбация.
  5. Удаление органики, хлора, озона – адсорбация, коагуляция
  6. Выведение нефтепродуктов – флотационные установки.
  7. Умягчение – ионный обмен, обратный осмос.

Стоимость промышленных фильтров зависит от сложности установки и используемых материалов, поэтому цену в каждом конкретном случае нужно уточнять индивидуально.

1

Настоящая статья посвящена обзору современных технологий очистки природных вод от антропогенных загрязнений, базирующихся на методах сорбции и биологического окисления. В статье рассмотрены основные пути попадания загрязнений в поверхностные водоисточники, представлены данные по составу вод в реках промышленно развитых регионов России. Существующие на действующих очистных сооружениях технологии не снижают концентрации антропогенных загрязнений в природных водах, что приводит к необходимости применения сорбционных методов очистки воды. Применение сорбционных методов очистки ограничено сорбционной емкостью сорбентов, по исчерпании которой необходима регенерация или замена сорбционного материала. Совмещение в биосорберах процессов сорбции и биологического окисления задержанных загрязнений позволяет поддерживать сорбционную емкость сорбентов на постоянном уровне. Дальнейшее развитие биосорбционной технологии связано с процессами мембранного разделения, позволяющими исключить вынос из биореактора частиц сорбента с закрепленной на них биомассой, что увеличивает эффект очистки и снижает ее стоимость.

биосорбционно-мембранная технология

очистка природных вод

питьевая вода

порошкообразный активированный уголь

хлорорганические соединения

1. Алексеева Л.П. Снижение концентрации хлорорганических соединений, образующихся в процессе подготовки питьевой воды // Водоснабжение и санитарная техника. – 2009. – № 9. – C. 27–34.

2. Андрианов А., Первов А. Методика определения параметров эксплуатации ультрафильтрационных систем очистки природных вод // Водоочистка. – 2005. – № 7. – C. 22–35.

3. Герасимов Г.Н. Мембранный биологический реактор BRM (опыт обработки промышленных и городских сточных вод) // Водоснабжение и санитарная техника. – 2004. – №4, часть 1.

4. Драгинский В.Л., Алексеева Л.П., Гетманцев С.В. Коагуляция в технологии очистки природных вод. – М., 2005. – 576 с.

5. Журба М.Г., Мякишев В.А. Очистка поверхностных вод, подвергшихся антропогенному воздействию // Водоснабжение и санитарная техника. – 1992. – № 8. – C. 2–6.

6. Журба М.Г., Соколов Л.И., Говорова Ж.М. Водоснабжение. Проектирование систем и сооружений: издание второе, переработанное и дополненное: учебное пособие. – М.: Изд-во АСВ, 2004. с. 496.

7. Линевич С.Н., Гетманцев С.В. Коагуляционный метод водообработки: теоретические основы и практическое использование. – М.: Наука, 2007. – С. 230.

8. Смолин С.К., Клименко Н.А., Невинная Л.В. Биорегенерация активных углей после адсорбции ПАВ в динамических условиях // Химия и технология воды. – 2001. – Т. 23, № 4.

9. Смирнова И.И. Исследование процесса очистки природных вод биосорбционно-мембранным методом: дис. ... канд. тех. наук: 05.23.04. – М., 2009. – 113 с.

10. Швецов В.Н. Очистка природных вод биосорбционно-мембранным методом / В.Н. Швецов и др. // Водоснабжение и сан. техника. – 2007. – № 11. – С. 24–28.

11. Швецов В.Н. Развитие биомембранных технологий очистки природных вод / В.Н. Швецов, К.М. Морозова, И.И. Смирнова // Водоснабжение и сан. техника. – 2009. – № 9. – С. 64–70.

12. Introduction to membranes – MBRs: Manufacturers` comparison: part 2. – supplier review // Filtration+Separation Elsevier Ltd., March 2008. – Р. 28–31.

13. Introduction to membranes – MBRs: Manufacturers` comparison: part 1 // Filtration+Separation Elsevier Ltd., April 2008. – Р. 30–32.

14. Kang I.-J., Lee Ch.-H., Kim K.-J. Characteristics of microfiltration membranes in a membrane coupled sequencing batch reactor system // Water Research 37. – 2003. – Р. 1192–1197.

15. Lebeau T., Lelievre C. и др. Immersed membrane filtration for the production of drinking water-combination with PAC for NOM and SOCs removal // Desalimation. – 1998. – № 17 – Р. 219–231.

16. Clever M., Jordt F., Knauf R., Rabiger N., Rudebusch M., Hilker-Scheibel R. Process water production from river water by ultrafiltration and reverse osmosis // Desalination. – 2000. – № 131. – Р. 325–336.

17. Sawada Shigeki Устройство для получения сверхчистой воды, пат. JP 3387311 B2, МПК C02F 1/44, с приоритетом от 22.04.1996, опубл. 17.03.2005.

18. Soe G.T., Ohgaki S., Suzuki Y. Biological powdered activated carbon (BPAC)- microfiltration (MF) for wastewater reclamation and reuse. Murdoch Univ.Perth, Australia: The Proc. of International Specialist Conference on “Desalination and Water reuse”. – 1994. – Р. 70–79.

19. Soe G.T., Ohgaki S., Suzuki Y. Sorption characteristics of biological powdered activated carbon in BPAC-MF (Biological Powdered Activated Carbon – Microfiltration) system for refractory Organic Removal // Wat. Sci. Tech. – 1997. – № 35(7) – Р. 163–170.

20. Stephenson Т., Judd S., Jefferson B., Brindle K. Membrane Bioreactors for Wastewater Treatment. IWA Publishing. – London: U.K., 2000.

21. Thiruvenkatachari R., Shim W.G., Lee J.W., Moon H. Effect of powdered activated carbon type on the performance of an adsorption-microfiltratin submerged hollow fiber membrane hybrid system // Korean J. Chem. Eng. – 2004. – № 21 (5). – Р. 1044–1052.

22. Visvanathan C., Ben Aim R., Parameshwaran K. Membrane separation bioreactors for wastewater treatment // Crit. Rev. Environ. Sci Technol. – 2000. – № 30(1). – Р. 1–48.

В России для организации водоснабжения преимущественно используются поверхностные водоисточники, на долю которых приходится до 70 % от общего водозабора.

Основными источниками поступления загрязняющих веществ в поверхностные воды являются: бытовые, промышленные и сельскохозяйственные сточные воды. Их воздействие выражается в повышении концентраций в поверхностных водах биогенных элементов, органических соединений, поверхностно-активных веществ (СПАВ), нефтепродуктов, фенолов и др.

Загрязнение природных водоемов различного рода примесями происходит и при контакте их с окружающей атмосферой. Так, многочисленные газообразные выбросы промышленных производств, содержащие азот, оксид углерода, диоксид серы и мельчайшие частицы производственных отходов, вместе с вентиляционными выбросами попадают в атмосферный воздух, после контакта с которым происходит загрязнение поверхностных водоисточников, вода которых насыщается дополнительными дисперсными, коллоидными и молекулярно-растворенными примесями антропогенного происхождения.

В таблице представлены данные по некоторым водоисточникам, имеющим повышенные концентрации загрязняющих веществ природного и антропогенного характера. Приведенные данные позволяют дать предварительную оценку воздействия антропогенных факторов на природные водоисточники .

Показатели

Мутность, мг/л

Цветность, град

Нефтепродукты, мг/л

Фенолы, мг/л

СПАВ, мг/л

Волга (Балахна)

Ока (Тула)

Клязьма (Владимир)

Которосль (Ярославль)

Дон (Таганрог)

Томь (Кемерово)

СанПин 2.1.4.1074-01

Примечание. * норматив ПДК для водоема рыбохозяйственного назначения.

В России технологии подготовки питьевой воды основаны на классических методах коагуляции, отстаивании, фильтрации и сорбции. Обеззараживание воды осуществляется с применением гипохлорита натрия и газообразного хлора. Из-за постоянно возрастающей степени загрязнения водоисточников традиционно применяемые технологии обработки воды стали в большинстве случаев недостаточно эффективными .

Очистка воды коагулированием и флокулированием загрязнений представляет собой сложный физико-химический процесс, на эффективность протекания которого оказывают влияние многочисленные факторы (взвешенные вещества, ионный состав, щелочность, количество растворенных органических соединений, температура и др.). В паводковый период холодная вода, высокие цветность и мутность, низкая щелочность требуют высоких доз коагулянта или применения флокулянтов для интенсификации процессов осаждения загрязнений. Ухудшение процесса коагуляции также наблюдается при коагулировании маломутных цветных вод в холодное время года.

Вместе с тем классические технологии водоочистки практически не удаляют из воды химические загрязнения, находящиеся в растворенном виде, такие как фенолы, СПАВ, растворенные фракции нефти, ионы тяжелых металлов и др. Вследствие чего действующие очистные сооружения не могут обеспечить надлежащей барьерной функции.

Традиционные технологии очистки воды недостаточно эффективны в отношении ряда антропогенных загрязнений. Так, например, при исходной концентрации нефтепродуктов 1-5 мг/л эффект очистки составляет 20-40 %; анионактивные ПАВ удаляются на 25-50 % при содержании их в исходной воде 1,5-2,5 мг/л; фенолы на традиционных сооружениях при начальной концентрации 0,05-0,2 мг/л практически не удаляются, эффект очистки редко превышает 5 % .

Во многих случаях на традиционных очистных сооружениях в процессе первичного хлорирования воды образуются хлорорганические соединения. Обусловлено это возрастанием антропогенных нагрузок на источники водоснабжения, а также изменением технологических режимов водоочистки, в частности применением повышенных доз хлора и коагулянта и увеличением времени контакта хлора с водой. Наиболее часто в хлорированной воде обнаруживаются в концентрациях, превышающих ПДК, четыреххлористый углерод, хлороформ и бромоформы, обладающие канцерогенностью и мутагенностью. Обеспечить их нормативные концентрации после всего цикла водообработки на традиционных сооружениях не всегда удается .

Повышение качества очищенной воды на водопроводных очистных сооружениях в настоящий момент осуществляется путем применения дополнительных методов доочистки воды: озонирования, сорбции, ионного обмена, обратного осмоса и др. Как правило, все эти методы требуют значительных капиталовложений на оборудование, электроэнергию, транспортные перевозки и реагенты.

Одним из распространенных в практике повышения качества водоочистки адсорбентом является активированный уголь.

Пористые сорбенты на основе активированных углей широко применяются в промышленности и являются эффективными поглотителями паров, газов, растворенных веществ, а также катализаторами или носителями катализаторов. Благодаря своим свойствам они обеспечивают эффективную сорбцию макромолекул (в т.ч. углеводородов, красителей, белков, жиров и др.).

Активированные угли используются на конечной стадии водоподготовки для удаления различного рода хлорорганических соединений как содержащихся в исходной воде, так и образующихся в ней в больших количествах на предыдущих стадиях водоподготовки. Помимо этого, АУ поглощают из воды фенолы, пестициды, нефтепродукты, соединения тяжелых металлов и вещества, обуславливающие неприятные привкусы и запахи воды, тем самым повышая барьерную функцию водоочистных станций.

В технологии водоподготовки активированный уголь применяется в виде порошка (ПАУ) при углевании воды, дробленых или недробленых гранул (ГАУ) при фильтровании через угольные фильтры. Основными преимуществами ПАУ является хорошая кинетика сорбции, а значительная площадь внешней поверхности ПАУ обуславливает эффективную сорбцию макромолекул.

Выбор марки адсорбционного материала заключается в подборе параметров его пористой структуры в зависимости от размеров молекул адсорбируемых веществ. Так, для сорбции фенола, вещества с низкой молекулярной массой, имеющего размер молекул τ ≈ 0,63 нм, подходят такие активированные угли, как АГ-3 и МАУ-100, имеющие требуемую структуру пор. Нефтепродукты и СПАВ имеют более крупные размеры молекул τ ≥ 1,8 нм, при таких размерах молекулы может быть использован мезопористый сорбент СГН - 30.

Несмотря на то, что применение ПАУ повышает степень очистки природных вод, некоторые трудноокисляемые органические вещества не поддаются адсорбции на активном угле. В процессе адсорбционной очистки воды способность активных углей извлекать органические вещества снижается, а регенерация отработанного угля требует существенных эксплуатационных затрат, которые связаны с материало- и энергоемкостью технологии .

Одним из эффективных способов удаления антропогенных загрязнений из природных вод являются биологичекие методы очистки, в основу которых положены процессы аналогичные деструкции и превращению органических веществ в природных водотоках и водоемах.

Сущность биологической очистки заключается в минерализации органических загрязнений обрабатываемых вод, находящихся в виде тонко диспергированных нерастворенных и коллоидальных веществ, а также в растворенном состоянии при помощи аэробных биохимических процессов. В зависимости от условий, в которых происходит очистка воды, биологические методы разделяют на биологическую очистку в условиях близких к естественным и в искусственно созданных условиях.

Для биологической очистки воды в искусственных условиях в практике водоподготовки, в последнее время в основном применяют технологии, основанные на использовании естественного биоценоза и искусственных носителей прикрепленной микрофлоры с высокоразвитой удельной поверхностью. В качестве материалов-носителей могут применяться синтетические волокна, различные зернистые и гранулированные материалы, такие как песок, керамзит, стекло, пластмассы, цеолиты и активированные угли.

Использование иммобилизованных (прикрепленных) микроорганизмов позволяет применять биотехнологии для очистки природных вод не только от традиционных загрязнений, но и от широкого спектра токсичных трудноокисляемых веществ.

Данная технология реализуется главным образом в таких сооружениях, как биофильтры, угольные адсорберы с биологической активностью, реакторы с кипящим слоем и биосорберы.

Дальнейшим развитием сорбционных и биологических методов удаления загрязнений является технология биосорбции, которая начала развиваться с 70-х годов прошлого столетия. Процесс биосорбции включает биологическую деградацию органических загрязняющих веществ в дополнение к адсорбции их на активном угле. Это приводит к более длительному периоду работы угля (вплоть до восстановления сорбционной емкости) и, следовательно, к снижению стоимости очистки.

Увеличение сорбционной емкости угля объясняется его биологической регенерацией, т.е восстановлением адсорбционной способности за счет биоокисления органических соединений, адсорбированных на активном угле. Биологическое удаление адсорбата на поверхности угля позволяет повторно открыть адсорбционные центры, которые могут быть заняты другими органическими молекулами из раствора.

К середине 90-х гг. прошлого века в зарубежных изданиях появляется информация о совместном использовании биоактивного порошкообразного угля и микрофильтрации, которое показало высокую эффективность при удалении биологически стойких органических вещества из сточной воды .

К тому же периоду относятся работы сотрудников НИИ ВОДГЕО по оценке технологической эффективности биосорбционного метода удаления из воды р. Москва природных загрязнений и веществ антропогенного характера в моменты резкого увеличения концентрации загрязнений в паводковый период или при аварийных ситуациях.

Длительная эксплуатация биосорбционных установок с псевдоожиженным слоем гранулированного биологически активного угля параллельно с технологической схемой, включающей предварительное хлорирование, коагуляцию, отстаивание и фильтрование последовательно на песчаном фильтре и фильтре с активированным углем показала, что эффективность биосорберов сравнима с эффективностью работы всей схемы. В отношении загрязнений природного происхождения биосорбционные установки обеспечили получение воды того же качества, что и при использовании традиционной схемы водоподготовки с доочисткой на сорбционных фильтрах. При этом цветность снижалась с 20-25 до 11-15 град., мутность в среднем с 10 до 4 мг/л, окисляемость с 6-8 до 3,5-4,0, азот аммонийный с 0,3 до 0,03, коли-индекс на 70-75 %. Биосорберы оказались весьма эффективны в качестве «барьерных сооружений» для снижения концентраций различных веществ антропогенного характера. При этом они хорошо зарекомендовали себя как в условиях долговременного воздействия загрязнений, так и в условиях пиковых нагрузок, имитирующих возможные аварийные ситуации.

При искусственном введении характерных ингредиентов антропогенного происхождения в исходную воду (нафтален, бифенил, нефтепродукты, линдан, симазин, карбофос, фенол, 2-4-дихлорфенол, бензапирен) с концентрациями до 100 ПДК для каждого из загрязнений биосорберы обеспечили практически полное их удаление. Наблюдения подтвердили, что в биосорберах одновременно протекают три процесса - адсорбция загрязнений, их модификация в микропористой структуре сорбента в биоразлагаемую форму и биологическое окисление. Наличие дополнительной адсорбционной емкости активированного угля позволяет извлекать и аккумулировать в относительно короткие промежутки времени значительно большее количество загрязнений, чем может быть окислено биологическим путем. Эти загрязнения извлекаются сорбентом, а затем постепенно окисляются бактериями и их ферментами в микропористой структуре сорбента.

В последние годы все большее внимание уделяется вопросу применения мембранного фильтрования для очистки природных вод. Мембранная технология широко используется в зарубежной практике. В течение последних двадцати лет большое внимание исследователей уделялось разработке мембранных биореакторов для очистки сточных вод на базе ультра- и микрофильтрации как альтернативной технологии для улучшения и усовершенствования традиционных систем обработки природных и сточных вод с активным илом .

M. Clever, N. Rabiger, M. Rudebusch провели длительные исследования по изучению процесса очистки природных вод, основанной на мембранном фильтровании. Эксперимент проводился в промышленном масштабе на природной воде р. Мейн, с использованием ультрафильтрационных мембран и специально разработанной методикой эксплуатации. В исследовании авторов отмечалось, что ультрафильтрация является альтернативой обычным процессам обработки природных вод, таким как озонирование, коагуляция, флокуляция, хлорирование и т.д. .

В исследовании А. Андрианова, А. Первова теоретически обоснован и разработан процесс очистки природных вод методом ультрафильтрации. Предложена методика определения параметров эксплуатации систем ультрафильтрации. Разработана экспериментальная экспресс-методика, позволяющая в течение короткого времени определить оптимальные режимы (частота и продолжительность промывки) и дать прогноз работы ультрафильтрационной установки очистки воды. Предложенные рекомендации легли в основу разработки систем ультрафильтрации, используемых НИИ ВОДГЕО для обезжелезивания подземных вод, очистки поверхностных вод и улучшения качества водопроводной воды на объектах водоснабжения .

Использование мембран в мембранном биореакторе позволяет задерживать практически всю биомассу, в связи с этим происходит накопление видов бактерий с большим периодом генерации, способных деструктировать устойчивые загрязнители.

В процессе эксплуатации в порах мембраны откладываются соли, а на поверхности образуются биообрастания, препятствующие фильтрованию воды. Регенерацию можно осуществлять дозированием химических реагентов, растворяющих отложения, в биореактор или же извлечением мембранных модулей с последующим погружением в емкости, наполненные регенерационными растворами. Снятие с поверхности мембран накапливающихся загрязнений может осуществляться крупнопузырчатой аэрацией мембранного модуля.

Следует отметить, что мембранная фильтрация не может обеспечить удаления молекул, меньших по размеру, чем размер пор в мембране, а уменьшение размера пор неизбежно ведет к возрастанию трансмембранного давления и, как следствие, к увеличению энергозатрат на эксплуатацию мембранных установок.

Совмещение мембранной фильтрации и адсорбции на порошкообразном активном угле является дальнейшим развитием мембранной и биосорбционных технологий очистки воды и способно обеспечить удаление большего количества загрязняющих веществ из природных вод. Биосорбционную технологию на ПАУ при этом возможно реализовать с использованием ультрафильтрационных и микрофильтрационных мембранных элементов, характеризующихся невысоким трансмембранным давлением.

В литературе неоднократно отмечались преимущества и перспективность комбинированных методов очистки для кондиционирования природных вод и проводились исследования на водах таких водоисточников, как р. Москва и р. Дон . Согласно эффективность очистки воды р. Москва в биосорбционном мембранном реакторе по мутности составляет 99-100 %, цветности - 50-60 %, перманганатной окисляемости - 30-35 %, нефтепродуктам - 95-98 %.

Однако необходимо отметить, что недостаточная теоретическая изученность ряда вопросов и отсутствие надежных инженерных решений в отечественной практике вызывает необходимость проведения специальных экспериментальных исследований с различными типами сорбентов и мембран.

Приведенные данные позволяют сделать следующие выводы, что наличие в природных водах трудноокисляемых соединений, а также образование в процессе водоочистки хлорорганических соединений ограничивает возможность применения традиционных технологий кондиционирования природных вод, поэтому для удаления из природных вод биогенных элементов и специфических органических загрязнений наиболее перспективной технологией является биосорбционный метод, с последующим мембранным разделением.

Библиографическая ссылка

Федотов Р.В., Щукин С.А., Степаносьянц А.О., Чепкасова Н.И. СОВРЕМЕННЫЕ ТЕХНОЛОГИИ ОЧИСТКИ ПРИРОДНЫХ ВОД ОТ АНТРОПОГЕННЫХ ЗАГРЯЗНЕНИЙ // Современные наукоемкие технологии. – 2016. – № 9-3. – С. 452-456;
URL: http://top-technologies.ru/ru/article/view?id=36249 (дата обращения: 18.10.2019). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

В условиях современного большого города, с загрязненным воздухом и достаточно плохой экологией, каждый человек стремится сохранить здоровье. Вода – основной продукт для каждого из нас. В последнее время все больше людей задумываются о том, какую воду они употребляют. В связи с этим жесткость и очистка воды не пустые термины, а важные параметры. Сегодня специалисты успешно применяют технологии водоподготовки и водоочистки, что способствует получению гораздо более чистой, пригодной для употребления воды. Профессионалы уделяют внимание и смягчению воды, проводя ряд мероприятий, улучшающих ее свойства.

Что предусматривают технологии водоподготовки

Давайте разберем более детально, что же такое технологии водоподготовки. Это прежде всего очистка воды от планктона. Данный микроорганизм, обитающий в реках, наиболее интенсивно начал развиваться после того, как появились крупные водохранилища. Отметим, что, когда планктон развивается в большом количестве, вода начинает неприятно пахнуть, меняться в цвете и приобретать характерный привкус.

Сегодня множество компаний в сфере промышленности выливает в реки свои неочищенные сточные воды с огромным содержанием органических загрязнений и химических примесей. Из этих открытых водоемов впоследствии и добывают питьевую воду. Как результат – большая часть из них, главным образом тех, что располагаются на территории мегаполисов или рядом с ними, очень загрязнена. В воде присутствуют фенолы, хлорорганические пестициды, аммонийный и нитритный азот, нефтепродукты и иные вредные вещества. Безусловно, вода из таких источников без предварительной подготовки к употреблению непригодна.

Не следует забывать о новых технологиях производства, разных ЧС и авариях. Все эти факторы также способны ухудшить состояние воды в источниках и негативно сказаться на ее качестве. Благодаря современным методам исследований ученым удалось найти в воде и нефтепродукты, и амины, и фенолы, и марганец.

Технологии водоподготовки, если речь идет о городе, – это в том числе возведение станций водоочистки. Благодаря прохождению через несколько этапов очищения вода становится более пригодной для питья. Но тем не менее даже с применением водоочистительных сооружений она освобождается от вредных примесей не до конца, а потому в наши дома поступает еще довольно загрязненной.

Сегодня существуют различные технологии водоподготовки и очистки питьевой и сточной воды. В рамках данных мероприятий применяют механическую очистку от разных примесей, используя установленные фильтры, удаляют остатки хлора и хлорсодержащие элементы, очищают воду от большого количества минеральных солей, содержащихся в ней, а также смягчают, устраняют соли и железо.

Основные технологии водоподготовки и водоочистки

Технология 1. Осветление

Осветлением называют стадию очистки воды, на которой устраняют ее мутность, снижая количество механических примесей природных и сточных вод. Уровень мутности воды, в особенности поверхностных источников в период паводков, иногда доходит до 2000–2500 мг/л, в то время как норма для воды, пригодной для питья и использования в хозяйстве, составляет не более 1500 мг/л.

Воду осветляют, осаждая взвешенные вещества при помощи специальных осветлителей, отстойников и фильтров, которые являются наиболее известными сооружениями водоочистки. Одним из самых известных, широко используемых на практике методов является коагулирование, то есть понижение количества тонкодисперсных примесей в воде. В рамках данной технологии водоподготовки используют коагулянты – комплексы для осаждения и фильтрования взвешенных веществ. Далее осветленная жидкость поступает в резервуары чистой воды.

Технология 2. Обесцвечивание

Коагулирование, использование разных окислителей (к примеру, хлора вместе с его производными, озона, марганца) и сорбентов (активного угля, искусственных смол) позволяет обесцвечивать воду, то есть устранять или обесцвечивать в ней окрашенные коллоиды или полностью растворенные вещества.

Благодаря этой технологии водоподготовки загрязненность воды можно существенно снизить, устранив большинство бактерий. При этом даже после удаления одних вредных веществ в воде часто остаются и другие, к примеру бациллы туберкулеза, брюшного тифа, дизентерии, вибрион холеры, вирусы энцефалита и полиомиелита, вызывающие инфекционные заболевания. Чтобы окончательно их уничтожать, воду, используемую для бытовых и хозяйственных нужд, следует обязательно обеззараживать.

Коагуляция, отстаивание и фильтрация имеют свои минусы. Данные технологии водоподготовки обладают недостаточно эффективностью и дорого стоят, а потому необходимо применение иных методов очистки и повышения качества воды.

Технология 3. Обессоливание

При данной технологии водоподготовки из воды удаляют все анионы и катионы, влияющие на содержание солей в целом и уровень ее электропроводности. При обессоливании применяют обратный осмос, ионный обмен и электродеионизацию. В зависимости от того, какой уровень содержания солей и какие требования существуют к обессоленной воде, выбирают подходящий способ.

Технология 4. Обеззараживание

Конечная стадия очистки воды – дезинфекция, или обеззараживание. Основная задача этой технологии водоподготовки – подавить жизнедеятельность вредных бактерий, находящихся в воде. Чтобы полностью очистить воду от микробов, фильтрацию и отстаивание не используют. Чтобы обеззаразить, ее хлорируют, а также применяют иные технологии водоподготовки, о которых мы расскажем далее.

Сегодня специалисты используют множество способов обеззараживания воды. Технологии водоподготовки можно разделить на пять основных групп. Первый метод – термический. Второй – сорбция на активном угле. Третий – химический, при котором используют сильные окислители. Четвертый – олигодинамия, при котором ионы воздействуют на благородные металлы. Пятый – физический. В рамках этой технологии водоподготовки используются радиоактивное излучение, ультрафиолетовые лучи и ультразвук.

Как правило, при обеззараживании воды применяют химические методы с использованием озона, хлора, диоксида хлора, марганцовокислого калия, пероксида водорода, гипохлорита натрия и кальция как окислителей. Что касается определенного окислителя, в данном случае чаще всего применяют хлор, гипохлорид натрия, хлорную известь. Способ дезинфекции выбирают исходя из расхода и качества очищаемой воды, эффективности ее начальной очистки, условий транспортировки и хранения реагентов, возможности автоматизировать процессы и механизировать сложные работы.

Специалисты дезинфицируют воду, предварительно обработанную, прошедшую коагулирование, осветленную и обесцвеченную в слое взвешенного осадка или отстоянную, отфильтрованную, поскольку фильтр не содержит частиц, на или внутри которых могут располагаться адсорбированные микробы, не подвергнутые обеззараживанию.

Технология 5. Обеззараживание с применением сильных окислителей

В данный момент в сфере ЖКХ обычно хлорируют воду с целью ее очистить и продезинфицировать. При употреблении воды из-под крана следует помнить о содержании в ней хлорорганических соединений, уровень которых после обеззараживания с использованием хлора составляет до 300 мкг/л. При этом начальный порог загрязненности не влияет на данный показатель, поскольку именно хлорирование вызывает образование этих 300 микроэлементов. Употреблять воду с такими показателями крайне нежелательно. Хлор, соединяясь с органическими веществами, образует тригалометаны – производные метана, имеющие выраженный канцерогенный эффект, в результате воздействия которого появляются раковые клетки.

Когда хлорированная вода кипятится, в ней образуется сильнейшее ядовитое вещество под названием диоксин. Снизить уровень тригаломенатов в воде можно, уменьшив объем хлора, используемый при обеззараживании, и заменив его на другие вещества для дезинфекции. В ряде случаев, чтобы удалить органические соединения, образующиеся при обеззараживании, пользуются гранулированным активированным углем. Безусловно, не следует забывать о полном и регулярном контроле над показателями качества питьевой воды.

Если же природные воды очень мутные и имеют высокую цветность, нередко прибегают к предварительному хлорированию. Но, как было сказано ранее, у данной технологии водоподготовки нет достаточной эффективности, а также она очень вредна для нашего здоровья.

К минусам хлорирования как к технологии водоподготовки, таким образом, относят малую эффективность плюс огромный ущерб для организма. Когда образуется канцероген тригалометан, появляются раковые клетки. Что касается образования диоксина, данный элемент, как было отмечено выше, является сильнейшим ядом.

Без использования хлора дезинфекция воды с экономической точки зрения является нецелесообразной. Различные альтернативные технологии водоподготовки (к примеру, дезинфекция, при которой используют УФ-излучение) стоят довольно дорого. Оптимальным вариантом на сегодняшний день можно считать обеззараживание воды с использованием озона.

Технология 6. Озонирование

Дезинфекция с применением озона кажется более безопасной, нежели хлорирование. Но и у этой технологии водоподготовки есть свои минусы. Озон не обладает повышенной стойкостью и склонен к быстрому разрушению, а потому оказывает бактерицидное влияние на протяжении очень малого времени. При этом воде требуется миновать водопроводную систему, перед тем как поступить в наши дома. Здесь появляются трудности, так как все мы представляем примерную степень изношенности водопроводов.

Еще один нюанс этой технологии водоподготовки – вступление озона в реакцию с множеством веществ, среди которых, к примеру, фенол. Элементы, образующиеся при их взаимодействии, еще более токсичны. Дезинфекция воды с использованием озона – опасное мероприятие, если вода содержит хотя мы мизерный процент ионов брома (его сложно выявить даже в лаборатории). Когда выполняется озонирование, появляются ядовитые соединения брома – бромиды, представляющие для человека опасность даже в микродозах.

Озонирование при этом – оптимальный вариант для дезинфекции большого объема воды, предполагающих тщательную дезинфекцию. Но не стоит забывать, что озон, как и вещества, появляющиеся при его реакциях с хлорорганикой, является ядовитым элементом. В связи с этим большая концентрация хлорорганики на этапе очистки воды может представлять большой вред и опасность для здоровья.

Итак, к минусам обеззараживания с использованием озона можно отнести еще большую токсичность при взаимодействии с фенолом, что даже опаснее хлорирования, а также короткое бактерицидное действие.

Технология 7. Обеззараживание с применением бактерицидных лучей

Чтобы дезинфицировать подземные воды, нередко используют бактерицидные лучи. Применять их можно только в случае коли-индекса исходного состояния воды не выше 1000 ед/л, содержания железа до 0,3 мг/л, мутности – до 2 мг/л. Если сравнивать с дезинфекцией хлором, бактерицидное воздействие на воду оптимально. Во вкусе воды и ее химических свойствах при использовании этой технологии водоподготовки не происходит никаких изменений. Лучи проникают в воду практически мгновенно, а после их воздействия она становится пригодной к употреблению. При помощи данного метода происходит уничтожение не только вегетативных, но и спорообразующих бактерий. Кроме того, использовать установки для дезинфекции воды таким способом гораздо удобнее, чем при хлорировании.

В случае с неочищенными, мутными, цветными или водами, в которых повышен уровень содержания железа, коэффициент поглощения оказывается таким сильным, что использование бактерицидных лучей становится неоправданным с экономической точки зрения и недостаточно надежным с санитарной. В связи с этим бактерицидный метод лучше использовать для дезинфекции уже очищенной воды или чтобы обеззараживать подземные воды, которым не требуется очистка, но необходимо обеззараживание для профилактики.

К минусам дезинфекции с использованием бактерицидных лучей можно отнести экономическую неоправданность и ненадежность этой технологии водоподготовки с точки зрения санитарии.

Технология 8. Обезжелезивание

Основные источники соединения железа в природной воде – процессы выветривания, эрозия почв и растворение горных пород. Что касается питьевой воды, в ней железо может присутствовать из-за коррозии труб водопровода, а также потому, что муниципальные станции очистки применяли железосодержащие коагулянты для осветления воды.

Существует современное направление в нехимических методах очистки подземных вод. Это биологический метод. В основу такой технологии водоподготовки положено использование микроорганизмов, чаще всего железобактерий, переводящих Fe 2 + (закисное железо) в Fe 3 + (ржавчину). Данные элементы для здоровья человека не являются опасными, но продукты их жизнедеятельности обладают достаточно высокой токсичностью.

Основа современных биотехнологий – применение свойств каталитической пленки, которая образуется на загрузке из песка и гравия или ином похожем материале с мелкими порами, а также способность железобактерий обеспечивать протекание сложных химических реакций без энергетических затрат и реагентов. Данные процессы естественны, а в их основу положены биологические природные закономерности. Железобактерии активно и в большом количестве развиваются и в воде, содержание железа в которой от 10 до 30 мг/л, но практика показывает, что жить они могут и при меньшей концентрации (в 100 раз). Единственным условием здесь является поддержка достаточно низкого уровня кислотности среды и одновременного доступа кислорода из воздуха, хотя бы в небольшом объеме.

Завершающий этап применения данной технологии водоподготовки – сорбционная очистка. Ее применяют, чтобы задержать продукты жизнедеятельности бактерий и провести окончательную дезинфекцию воды с использованием бактерицидных лучей.

Данный метод имеет достаточно преимуществ, важное из которых, к примеру, экологичность. У него есть все шансы для дальнейшего развития. Однако у этой технологии водоподготовки есть и минус – процесс отнимает много времени. Это значит, что для того, чтобы обеспечить большие производственные объемы, емкостные сооружения должны быть крупногабаритными.

Технология 9. Д егазация

На коррозионную агрессивность воды влияют определенные физико-химические факторы. В частности, вода становится агрессивной, если в ней есть растворенные газы. Что касается наиболее распространенных и коррозионно-агрессивных элементов, здесь можно отметить углекислый газ и кислород. Не секрет, что, если в воде содержится свободный диоксид углерода, кислородная коррозия металла становится интенсивнее в три раза. В связи с этим технологии водоподготовки всегда подразумевают устранение растворенных газов из воды.

Существуют главные способы удаления растворенных газов. В их рамках применяют физическую десорбцию, а также пользуются химическими методами их связывания, чтобы удалить остатки газа. Для применения таких технологий водоподготовки, как правило, необходимы высокие энергетические затраты, большие производственные площади, расход реагентов. Помимо этого, все это может вызывать вторичное микробиологическое загрязнение воды.

Все вышеперечисленные обстоятельства поспособствовали возникновению принципиально новой технологии водоподготовки. Это мембранная дегазация, или дегазификация. Применяя данный метод, специалисты, используя особую пористую мембрану, в которую могут проникать газы, но не способна проникать вода, удаляют растворенные в воде газы.

Основа действия мембранной дегазации – применение специальных мембран большой площади (обычно созданных на основе полого волокна), размещенных в напорных корпусах. Процессы газообмена происходят в их микропорах. Мембранная технология водоподготовки дает возможность применять более компактные установки, а риски того, что вода вновь подвергнется биологическому и механическому загрязнению, сводятся к минимуму.

Благодаря мембранным дегазаторам (или МД) возможно удаление из воды растворенных газов без ее диспергирования. Сам процесс осуществляется в воде, затем в мембране, далее – в газовом потоке. Несмотря на наличие ультрапористой мембраны в МД, принцип действия мембранного дегазатора отличается от мембран иного типа (обратноосмотического, ультрафильтрационного). В пространстве мембран дегазатора поток жидкости через мембранные поры не идет. Мембрана – это инертная газонепроницаемая стенка, служащая разделителем для жидкой и газообразной фаз.

Мнение эксперта

Особенности применения технологии озонирования подземных вод

В.В. Дзюбо ,

Л.И. Алферова ,

старший научный сотрудник кафедры «Водоснабжение и водоотведение» ФГБОУ ВПО «Томский государственный архитектурно-строительный университет»

На то, насколько эффективным будет озонирование как технология водоподготовки и очистки подземных вод, влияют не только параметры синтеза озона: затраты электрической энергии, цена и т. д. Важно и то, насколько эффективно происходит перемешивание и растворение озона в воде, подвергающейся обработке. Не следует забывать и о качественном составе.

Для лучшего растворения озона больше подходит холодная вода, а распадается вещество быстрее, когда температура водной среды растет. Когда давление насыщения увеличивается, озон также растворяется лучше. Все это нужно учитывать. К примеру, озон до 10 раз быстрее растворяется в определенной температурной среде, нежели кислород.

В России и за рубежом неоднократно проводились исследования, связанные с озонированием воды. Результаты исследований данной технологии водоподготовки показали, что на уровень насыщения воды озоном (максимально возможную концентрацию) влияют следующие факторы:

  • соотношение объема подаваемой смеси озона и воздуха (м 3) и количества обрабатываемой воды Qw (м 3) - (Qoz / Qw);
  • концентрация озона в смеси озона и воздуха, которая подается в воду;
  • объем воды, подвергающейся обработке;
  • температура воды, подвергающейся обработке;
  • давление насыщения;
  • продолжительность насыщения.

Если источником водоснабжения являются подземные воды, следует помнить, что в зависимости от сезона они могут меняться, в частности их качество становится иным. Это необходимо учитывать, обосновывая технологии водоподготовки для организации коммунального водоснабжения, особенно если в нем применяется озонирование.

Если в технологиях водообработки подземных вод используется озон, не стоит забывать о существенных различиях в их качестве в разных регионах России. Кроме того, качество подземных вод отличается и от состава исследуемой ранее чистой воды. В связи с этим применение какой-нибудь известной технологии водоподготовки или технологических параметров обработки воды будет некорректным, поскольку всегда следует учитывать качественный состав и специфику воды, подлежащей планируемой обработке. К примеру, между реальной или фактически достигаемой концентрацией озона в природных подземных водах, подлежащих обработке, и теоретически возможных или достигаемых при применении чистой воды показателях всегда будут отличия. Обосновывая те или иные технологии водоподготовки, требуется прежде всего детальное изучение качественного состава источника воды.

  • Очистка и обеззараживание сточных вод: современная проблематика

Современные технологии водоподготовки и инновационные методы

Внедряя новые методы и технологии водоподготовки, можно решать определенные задачи, достижение которых обеспечивает:

  • выпуск питьевой воды по ГОСТу и действующим стандартам, удовлетворяющим требования покупателей;
  • надежную очистку и обеззараживание воды;
  • бесперебойность и надежность работы сооружений водоочистки;
  • понижение себестоимости подготовки воды и процессов ее очистки;
  • экономию реагентов, электрической энергии и воды на личные нужды;
  • высокое качество производства воды.

Следует затронуть и новейшие технологии водоподготовки, которые используют, чтобы улучшить воду.

1. Мембранные методы

Основу мембранных методов составляют современные технологии водоподготовки, в которые входят макро- и микро-, ультра- и нанофильтрация, а также обратный осмос. Мембранная технология водоподготовки используется, чтобы опреснять сточные воды и решать задачи, связанные с водоочисткой. При этом очищенную воду еще нельзя назвать полезной и безопасной для организма. Отметим, что мембранные методы дорогостоящие и энергоемкие, а их применение связано с постоянными затратами на обслуживание.

2. Безреагентные методы

Здесь следует прежде всего выделить структурирование, или активацию, жидкости как самый часто применяемый метод. Сегодня существуют различные способы активации воды (к примеру, использование магнитных и электромагнитных волн, кавитации, волн УЗ-частот, воздействие с применением различных минералов, резонансные способы). При помощи структурирования можно решать ряд задач по подготовке воды (обесцвечивать, смягчать, дезинфицировать, дегазировать, обезжелезивать воду и проводить ряд других манипуляций). Химические технологии водоподготовки при этом не используются.

Активированная вода и жидкость, к которой были применены традиционные технологии водоподготовки, отличаются друг от друга. О недостатках традиционных способов уже было сказано ранее. Структура активированной воды схожа со структурой воды из родника, «живой» водой. В ней есть множество целебных свойств и огромная польза для организма человека.

Чтобы удалять из жидкости муть (трудно осаждаемые тонкие взвеси), применяют иной метод активированной воды – ее способность к ускорению коагуляции (слипанию и осаждению) частиц и последующему образованию крупных хлопьев. Химические процессы и кристаллизация растворенных веществ происходят гораздо быстрее, абсорбция становится более интенсивной, наблюдается улучшение коагуляции примесей и их выпадения в осадок. Кроме того, такими способами часто пользуются, чтобы предотвращать появление накипи в теплообменном оборудовании.

На качество воды прямо влияют используемые методы активации и технологии водоподготовки. В их числе:

  • устройства обработки воды магнитным методом;
  • электромагнитные способы;
  • кавитационные;
  • резонансное волновое структурирование жидкости (данная технология водоподготовки является бесконтактной, а ее основу составляют пьезокристаллы).

3. Гидромагнитные системы

Предназначение ГМС (гидромагнитных систем) – обработка потоков воды при помощи постоянного магнитного поля особой пространственной конфигурации. ГМС используют, чтобы нейтрализовать накипь в теплообменном оборудовании, а также чтобы осветлять воду (к примеру, после дезинфекции хлором). Работает данная система так: ионы металла, находящиеся в воде, взаимодействуют между собой на магнитном уровне. В это же время протекает химическая кристаллизация.

Обработка с использованием гидромагнитных систем не нуждается в химических реактивах, а потому данный метод очистки экологический чист. Но в ГМС присутствуют и минусы. В рамках этой технологии водоподготовки применяются постоянные мощные магниты, основу которых составляют редкоземельные элементы, сохраняющие свои параметры (силу магнитного поля) на протяжении длительного времени (десятилетий). Но в случае перегрева данных элементов выше отметки 110–120 о С возможно ослабевание магнитных свойств. В связи с этим монтаж гидромагнитных систем следует осуществлять в тех местах, где температура воды не превышает эти значения, т.е. до того, как ее нагревают (линия обратки).

Итак, к минусам ГМС относятся возможность использования при температуре не более 110–120 о С, недостаточная эффективность, необходимость использовать вместе с ней иные методы, что невыгодно с экономической точки зрения.

4. Кавитационный метод

При кавитации в воде образуются полости (каверны или кавитационные пузырьки), внутри которых находятся газ, пар или их смесь. При кавитации вода переходит в другую фазу, то есть превращается из жидкости в пар. Появляется кавитация тогда, когда понижается давление в воде. Изменение давления бывает вызвано увеличением ее скорости (при гидродинамической кавитации), прохождением акустической воды во время полупериода разрежения (при акустической кавитации).

Когда кавитационные пузырьки резко исчезают, возникают гидравлические удары. В результате этого создается волна сжатия и растяжения в воде с УЗ-частотой. Кавитационным методом пользуются, чтобы очистить воду от железа, жестких солей и других веществ, превышающих ПДК. При этом обеззараживание воды кавитацией не очень эффективно. К другим недостаткам использования метода относятся существенное потребление электроэнергии и дорогостоящее обслуживание с расходными фильтрующими элементами (ресурс от 500 до 6000 м 3 воды).

Технологии водоподготовки питьевой воды для ЖКХ по схеме

Схема 1. Аэрация-дегазация - фильтрование - обеззараживание

Данную технологию водоподготовки можно назвать наиболее простой с технологической точки зрения и конструктивной при реализации. Схема реализуется разными методами аэрации-дегазации – все зависит от того, какой качественный состав имеют подземные воды. Вот два ключевых способа применения этой технологии водоподготовки:

  • аэрация-дегазация жидкости в начальном состоянии в резервуаре; принудительная подача воздуха и последующая фильтрация на зернистых фильтрах и обеззараживание способом УФ-облучения не используются. При аэрации-дегазации производят разбрызгивание на жесткий контактный слой при помощи эжекторных насадок и вихревых сопл. В качестве резервуара начальной воды могут выступать контактный бассейн, водонапорная башня и т. д. Фильтры здесь – альбитофиры, горелые породы. Данную технологию обычно используют, чтобы очищать подземные воды, в которых присутствуют минеральные формы растворенных Fe 2 + и Mn 2 +, не имеющих в составе H 2 S, CH 4 и антропогенных загрязнений;
  • аэрация-дегазация, проводимая по аналогии с предыдущим способом, но при этом дополнительно используется принудительная подача воздуха. Такой метод применяют, если в составе подземных вод есть растворенные газы.

Очищенную воду могут подавать в специальные РЧВ (резервуары чистой воды) или башни, которые являются специальными накопительными емкостями, при условии, что они не еще были использованы как приемный резервуар. Далее воду транспортируют потребителям по разводящим сетям.

Схема 2. Аэрация-дегазация - фильтрование - озонирование - фильтрование на ГАУ - обеззараживание

Что касается данной технологии водоподготовки, ее использование целесообразно для комплексной очистки подземных вод, если присутствуют сильные загрязнения в большой концентрации: Fe, Mn, органика, аммиак. В ходе данного способа проводят разовое или двойное озонирование:

  • если в воде есть растворенные газы CH 4 , CO 2 , H 2 S, органика и антропогенные загрязнения, озонирование производят после аэрации-дегазации с фильтрованием на инертных материалах;
  • если CH 4 нет, при (Fe 2 +/Mn 2 +) < 3: 1 озонирование нужно проводить на первом этапе аэрации-дегазации. Уровень доз озона в воде не должен быть выше 1,5 мг/л, чтобы не допустить окисления Mn 2 + до Mn 7 +.

Можно использовать те фильтрующие материалы, что указаны в схеме А. Если применяется сорбционная очистка, часто пользуются активированными углями и клиноптилолитом.

Схема 3. Аэрация-дегазация - фильтрование - глубокая аэрация в вихревых аэраторах с озонированием - фильтрование - обеззараживание

Данная технология развивает технологию очистки подземных вод по схеме В. Ее можно применять, чтобы очищать воды, в которых содержится повышенный уровень Fe (до 20 мг/л) и Mn (до 3 мг/л), нефтепродукты до 5 мг/л, фенолы до 3 мкг/л и органика до 5 мг/л с рН исходной воды, близкой к нейтральной.

В рамках этой технологии водоподготовки лучше всего использовать УФ-облучение, чтобы обеззараживать очищенную воду. Территориями для бактерицидных установок могут быть:

  • места, расположенные прямо перед подачей потребителям очищенных вод (если протяженность сетей небольшая);
  • прямо перед местами водоразбора.

С учетом того, каким качеством обладают подземные воды с санитарной точки зрения и каком состоянии находится система водоснабжения (сети, сооружения на них, РЧВ и т. д.), оснащение станций или оборудование водоподготовки в целях дезинфекции воды перед ее поставкой потребителям могут подразумевать наличие любого приемлемого для условий той или иной территории оборудования.

Схема 4. Интенсивная дегазация-аэрация - фильтрование (АБ; ГП) - обеззараживание (УФО)

В данной технологии водоподготовки есть этапы интенсивной дегазации-аэрации и фильтрования (иногда двухступенчатого). Применение этого способа целесообразно при необходимости отдувки растворенных CH 4 , H 2 S и СО 2 , присутствующих в повышенных концентрациях при достаточно небольшом содержании растворенных форм Fe, Mn - до 5 и 0,3 мг/л соответственно.

В рамках применения технологии водоподготовки производятся усиленная аэрация и фильтрование в 1–2 ступени.

Чтобы выполнять аэрацию, пользуются вихревыми форсунками (применительно к индивидуальным системам), вихревыми дегазаторами – аэраторами, комбинированными дегазационно-аэрационными узлами (колоннами) с одновременной отдувкой газов.

Что касается фильтрующих материалов, они аналогичны указанным в схеме А. При содержании фенолов и нефтепродуктов в подземных водах фильтрацию проводят, используя сорбенты – активированные угли.

В соответствии с этой схемой выполняют фильтрацию воды на двухступенчатых фильтрах:

  • 1-я ступень – чтобы очистить воду от соединений Fe и Mn;
  • 2-я ступень - чтобы провести сорбционную очистку воды, которая уже очищена, от нефтепродуктов и фенолов.

Если это возможно, выполняют только первую стадию фильтрации, за счет чего схема становится гибче. При этом реализация такой технологии водоподготовки требует больше затрат.

Если мы рассматриваем малые и средние населенные пункты, применение данной технологии водоподготовки предпочтительнее в напорном варианте.

В рамках применения технологии водоподготовки можно пользоваться любым способом дезинфекции воды, уже прошедшей очистку. Здесь все зависит от того, насколько производительной является система водоснабжения и каковы условия территории, где используется технология водоподготовки.

Схема 5. Озонирование - фильтрование - фильтрование - обеззараживание (NaClO)

Если нужно удалить антропогенные и природные загрязнения, прибегают к озонированию с дальнейшей фильтрацией через зернистую нагрузку и адсорбцией на ГАУ и обеззараживанием гипохлоритом натрия при содержании в воде общего железа до 12 мг/л, перманганата калия до 1,4 мг/л и окисляемости до 14 мг О 2 /л.

Схема 6. Аэрация-дегазация - коагулирование - фильтрование - озонирование - фильтрование - обеззараживание (NaClO)

Этот вариант схож с предыдущей схемой, но здесь используется аэрация-дегазация и введен коагулянт перед фильтрами обезжелезивания и деманганации. Благодаря технологии водоподготовки возможна очистка от загрязнений антропогенного характера в более сложной ситуации, когда уровень содержания железа достигает до 20 мг/л, марганец до 4 мг/л и присутствует высокая перманганатная окисляемость - 21 мг О 2 /л.

Схема 7. Аэрация-дегазация - фильтрование - фильтрование - ионный обмен - обеззараживание (NaClO)

Данная схема рекомендована районам Западной Сибири, где есть значительные месторождения нефти и газа. В рамках технологии водоподготовки воду освобождают от железа, проводятся собрция на ГАУ, ионный обмен на клиноптилолите в Na-форме с дальнейшим обеззараживанием и гипохлоритом натрия. Отметим, что на территории Западной Сибири уже успешно пользуются схемой. Благодаря такой технологии водоподготовки вода соответствует всем нормам СанПиН 2.1.4.1074–01.

У технологии водоподготовки есть и минусы: периодически ионообменные фильтры необходимо регенерировать, используя раствор поваренной соли. Соответственно, здесь остро встает вопрос уничтожения или вторичного применения раствора для регенерации.

Схема 8. Аэрация-дегазация - фильтрование (Ц + КМnО 4) - озонирование - отстаивание - адсорбция (Ц) - фильтрование (Ц + КМnО 4) (деманганация) - адсорбция (Ц) - обеззараживание (Cl)

Благодаря технологии водоподготовки по данной схеме из воды удаются тяжелые металлы, аммоний, радионуклиды, антропогенные органические загрязнения и иное, а также марганец и железо в два этапа – с применением коагуляции и фильтрации через загрузку из природного цеолита (клиноптилолита), озонирования и сорбции на цеолите. Регенерируют загрузку, применяя реагентный метод.

Схема 9. Аэрация-дегазация - озонирование - фильтрование (осветление, обезжелезивание, деманганация) - адсорбция на ГАУ - обеззараживание (УФО)

В рамках данной технологии водоподготовки проводятся следующие мероприятия:

  • полностью удаляются метан с попутным повышением рН в результате частичной отдувки диоксида углерода, сероводорода, а также летучие хлорорганические соединения (ЛХОС), выполняются преозонирование, окисление преозонирования и гидролиз железа (стадия глубокой аэрации-дегазации);
  • удаляются 2–3-валентное железо и железофосфатные комплексы, частично марганец и тяжелые металлы (стадия фильтрации технологии водоподготовки);
  • разрушают остаточные стойкие комплексы железа, перманганата калия, сероводорода, антропогенные и природные органические вещества, сорбции продуктов озонирования, нитрифицируют аммонийный азот (стадия озонирования и сорбции).

Очищенная вода должна подвергаться дезинфекции. Для этого выполняют УФ-облучение, вводят малую дозу хлора, и только потом подают жидкость в водораспределительные сети.

Мнение эксперта

Как выбрать подходящую технологию водоподготовки

В.В. Дзюбо ,

д-р техн. наук, профессор кафедры «Водоснабжение и водоотведение» ФГБОУ ВПО «Томский государственный архитектурно-строительный университет»

С инженерной точки зрения проектировать технологии водоподготовки и составлять технологические схемы, по которым нужно приводить воду к питьевым стандартам, достаточно трудно. На определение метода обработки подземных вод как отдельного этапа при составлении общей технологии водоподготовки влияют качественный состав природных вод и требуемая глубина очистки.

Подземные воды в российских регионах различны. Именно от их состава зависят технологии водоподготовки и достижения соответствия воды питьевым нормам СанПиН 2.1.4.1074–01 «Питьевая вода. Гигиенические требования к качеству воды централизованных систем питьевого водоснабжения. Контроль качества. Санитарно-эпидемиологические правила и нормативы». От исходного качества и содержания питьевой воды также зависят используемые технологии водоподготовки, их сложность и, конечно, затраты на оборудование для очистки.

Как уже было отмечено, состав у вод различен. На его формирование влияют географические, климатические, геологические условия местности. К примеру, результаты природных исследований состава вод на разных территориях Сибири свидетельствуют о том, что они в разные сезоны обладают разными характеристиками, поскольку их питание в зависимости от времени года меняется.

Когда нарушаются условия отбора подземных вод из водоносных горизонтов, происходит переток вод из соседствующих горизонтов, что также воздействует на изменение характеристик, качественный состав жидкостей.

Поскольку от характеристик вод зависит выбор той или иной технологии водоподготовки, необходимо детально и полно анализировать их состав, чтобы выбирать менее затратный и наиболее эффективный вариант.

Г. Москва;
д.т.н. Е.Н. Бушуев, профессор,
к.т.н. Н.А. Еремина, доцент,
ФГБОУВПО ИГЭУ, г. Иваново

Водоподготовительная установка (ВПУ) на ТЭС призвана восполнять потери водного теплоносителя в основном контуре. Существует большое количество возможных вариантов схем водоподготовки для получения обессоленной воды на ТЭС.

Наибольшее распространение в нашей стране получила технология химического обессоливания на базе прямоточных ионитных фильтров. Эта технология применяется уже несколько десятилетий и показала себя вполне надежной для вод малой и средней минерализации (+<5 мг-экв/дм 3). Для вод с высокой минерализацией (+>5 мг- экв/дм 3) или при повышенном содержании органических соединений (Ок>20 мгО/дм 3) используют термическое обессоливание .

В природной воде постоянно отмечается рост загрязненности техногенными органическими соединениями: удобрениями, ядохимикатами, нефтепродуктами и т.д. Традиционные химические технологии водоподготовки удаляют эти загрязнения недостаточно эффективно, что приводит к образованию в конденсатно-питательном тракте потенциально кислых веществ, и, как следствие, к многочисленным фактам нарушения ВХР .

Ужесточение экологических требований к сточным водам водоподготовительных установок, с одной стороны, ухудшение качества обрабатываемой воды, с другой, удорожание реагентов, ионитов, а также высокие эксплуатационные затраты привели к необходимости совершенствования традиционных технологий и созданию новых схем обессоливания.

Наиболее перспективными технологиями обработки вод невысокой минерализации с повышенным содержанием органических примесей, что характерно для поверхностных вод центра и севера России, являются: противоточное ионирование и обессоливание на основе мембранных методов.

Новые ВПУ, основанные на противоточных технологиях, внедрены на Калининской АЭС, ТЭЦ-ЭВС-2 ОАО «Северсталь» и др. В настоящее время накоплен первый опыт эксплуатации новых установок, частично или полностью укомплектованных импортным оборудованием и фильтрующими материалами, не всегда учитывающих особенности примесей природных вод, иногда упрощенных в целях снижения капитальных затрат.

ВПУ номинальной производительностью 1700 м 3 /ч находится в эксплуатации на ТЭЦ- ЭВС-2 ОАО «Северсталь». Установка предназначена для выработки глубоко умягченной воды (Жо<10 мкг-экв/дм 3) и включает две стадии обработки исходной (р. Шексна) воды: осветление на механических однокамерных фильтрах (12 шт. с единичной производительностью 145 м 3 /ч) с периодическим подключением контактной коагуляции и Na-катионирование на противоточных фильтрах (4 шт. с единичной производительностью 585 м 3 /ч).

Противоточный Na-катионитный фильтр предполагает фильтрацию осветленной воды снизу вверх с расходом от 170 до 585 м 3 /ч. Фильтр представляет собой двухкамерный аппарат (D=3,8 м) с тремя дренажными устройствами типа «ложное дно» и тысячей колпачковых элементов в каждом устройстве, перекрывающем все поперечное сечение фильтра. Фильтр загружен катионитом С-100 (объем ионита - 30 м 3: 10 - внизу и 20 - сверху) с плавающим слоем инерта.

По результатам лабораторных исследований и промышленных испытаний было установлено, что данный катионит устойчиво работает с рабочей обменной емкостью Ер=1200÷1400 г-экв/м 3 при удельном расходе соли на регенерацию 100 г/г экв. При нагрузке в диапазоне 170÷500 м 3 /ч на один фильтр (скорость фильтрации до 50 м/ч, диаметр 3,8 м) жесткость умягченной воды держится на уровне 2 мкг-экв/дм 3 . Первые фильтроциклы составили 25000 м 3 , через год фильтроцикл снизился до 18000-20000 м 3 .

Высокое качество химочищенной воды при большой единичной производительности ионитных фильтров обеспечивается глубокой автоматизацией управления, как отдельными фильтрами, так и всей установки в целом. Установка может работать и периодически работает в полностью автоматическом режиме. При этом оперативный персонал контролирует состояние технологического процесса по компьютерным экранным формам визуализации и в любой момент может переключить управление установкой на ручной режим.

Данная установка отработала под контролем сотрудников кафедры ХХТЭ ИГЭУ почти год большей частью в автоматическом режиме . Выработка умягченной воды за фильтроцикл составила 20000 м 3 , против 6000-8000 м 3 на традиционных прямоточных фильтрах в равных условиях. Удельные расходы соли снижены на 20%, расход воды на собственные нужды Nа-катионитного фильтра составил 1% по сравнению с 35% по традиционной технологии.

Опыт эксплуатации противоточных технологий доказывает их преимущества по сравнению с традиционными: снижение количества необходимого водоподготовительного оборудования; высокие обменные емкости ионитов; высокое качество фильтрата, которое обеспечивается при небольших расходах реагентов на регенерацию - 1,8-2,2 г-экв/г-экв; уменьшение количества высокоминерализованных сточных вод.

Однако, из-за отсутствия второй (барьерной) ступени и трудности определения момента вывода на регенерацию отключение противоточного фильтра часто проводится по количеству пропущенной воды со значительным запасом, что ведет к недовыработке обессоленной воды. При противоточной регенерации увеличивается интенсивность регенерации и, как следствие, количество переключений, что требует высокой культуры обслуживания таких установок, надежной арматуры, средств автоматизации и контроля. Все они требуют применения осветленной воды, глубоко очищенной от взвешенных, органических веществ, а также соединений железа. Эффективность применения противотока тем выше, чем качественнее поступающая на фильтры вода.

В последнее время большое внимание уделяется малореагентным методам и прежде всего мембранным технологиям.

Некоторые новые ВПУ основаны на применении обратного осмоса для деминерализации воды с использованием в качестве предочистки традиционных технологий (осветлителей, механических фильтров). Примерами таковых являются ВПУ , ТЭЦ ОАО «Северсталь», (рис. 1). Использование обратного осмоса дает возможность извлекать на одной ступени очистки до 96-98% солей, что близко к эффективности одной ступени ионного обмена.

Система доочистки пермеата может состоять из ступени ионного обмена с раздельным Н- и ОН-ионированием (прямоточным или противоточным), и (или) с фильтром смешанного действия. Поскольку на такую установку поступает частично обессоленная вода, ресурс фильтров значителен и достигает десятков и сотен тысяч кубических метров.

Сравнение экономической эффективности обессоливания воды ионным обменом и обратным осмосом показало, что при солесодержании более 150-300 мг/л обратный осмос экономичнее даже противоточного ионирования .

Имеющийся опыт эксплуатации установок обратного осмоса (УОО) свидетельствует о том, что основным фактором, от которого зависит работа мембран, является соблюдение норм качества воды, подаваемой на обработку. Производителями мембран к питательной воде, идущей на УОО, предъявляют требования, представленные в табл. 1 .

Таблица 1. Требования к воде, поступающей на УОО.

Анализ этих требований показывает, что нет ограничений на содержание солей, содержащихся в поверхностных водоисточниках, на работу в широком диапазоне показателя рН. Ограничивается лишь содержание тех веществ, которые могут привести к отравлению или забиванию мембран. Традиционные для водоподготовки показатели качества осветления воды (концентрация взвешенных веществ, мутность по «кресту», прозрачность, цветность, окисляемость) не дают адекватного представления о взаимосвязи между производительностью мембран и загрязнением их поверхности и пор осадками взвешенных и коллоидных частиц. Фирмы- производители обратноосмотических элементов оценивают качество обрабатываемой воды, прежде всего, показателем SDI . Предельно допустимое SDI - 5, а при значениях SDI от 3 до 5 производители относят такие воды к проблемным, устойчивая работа обратноосмотического элемента гарантируется при SDI<3.

Однако, опыт показывает, что в схемах с традиционной технологией предочистки, качество воды, поступающей на УОО, часто не отвечает требованиям по содержанию железа и окисляемости. Необходимое качество такой воды может быть достигнуто применением ультрафильтрации на стадии предочистки (рис. 2).

Ультрафильтрация (УФ) позволяет не только получать воду, практически свободную от механических примесей, но и совместно с коагуляцией удалять значительное количество органики (до 60% от исходного количества), а также кремниевую кислоту. В качестве примера можно привести результаты работы установки ультрафильтрации на (источник водоснабжения - река Суда) (табл. 2).

Таблица 2. Результаты работы установки УФ.

Внедрение УФ на стадии предочистки значительно увеличило производительность обратноосмотических мембран, в несколько раз сократило частоту химических промывок, высвободило производственные площади, уменьшило расход коагулянта, обеспечило возможность отказа от извести.

Совместное использование ультрафильтрации и обратного осмоса дает возможность создать малореагентную систему водоподготовки для получения фильтрата с удельной электропроводностью на уровне 1-5 мкСм/см. В таких схемах дальнейшее доведение качества воды до нормативных значений обычно производится ионообменным (рис. 2) методом.

Надежность комбинированной мембранноионообменной установки (рис. 2) большая, поскольку даже при возможных нарушениях работы системы обратного осмоса, узел доочистки обеспечит заданное качество воды. Вместе с тем, сохраняется необходимость в использовании кислоты и щелочи, поэтому данная технология, хоть и в меньшей степени, имеет те же недостатки, что и традиционная. Такая технология применяется на , и т.д.

Основным недостатком всех мембранных систем является достаточно низкий коэффициент использования исходной воды. Если в традиционной ионообменной схеме с коагуляцией и механической фильтрацией собственные нужды составляют 10-20%, то для типичного сочетания ультрафильтрации и обратного осмоса этот показатель 40-50%. Однако следует учитывать, что концентраты от установок ультрафильтрации и обратного осмоса по солесодержанию часто находятся в пределах нормируемых значений и могут быть беспрепятственно сброшены.

Комбинированные мембранно-ионообменные схемы, имеющие высокую степень экономической эффективности и надежности, являются оптимальным и рекомендуемым методом при реконструкции существующих ВПУ, где уже имеются ионообменные фильтры, реагентное хозяйство и системы сбора и нейтрализации стоков. Количество концентрированных сточных вод и расход реагентов в этом случае в десятки раз меньше, чем при чисто ионообменной схеме. Полученные сточные воды могут быть разбавлены до допустимых норм концентратом мембранных установок.

С точки зрения обеспечения минимального расхода реагентов и наивысшей экологичности при высоком качестве обессоленной воды наибольшую эффективность имеют комплексные ВПУ, состоящие исключительно из мембранных модулей различного назначения: ультра- и нанофильтрации, обратного осмоса, мембранной дегазации и электродеионизации, называемых в целом - интегрированные мембранные технологии (ИМТ) .

В комплексной мембранной установке (рис. 3) вода доочищается на узле электродеионизации. Электродеионизация (ЭДИ, EDI) - это процесс непрерывного обессоливания воды с использованием ионообменных смол, ионоселективных мембран и постоянного электрического поля.

При степени использования исходной воды 90-95% очищенная вода имеет удельную электропроводность на уровне 0,1 мкСм/см (табл. 3), а также минимальное кремнесодержание и общий органический углерод. При этом солесодержание концентрата обычно ниже, чем солесодержание воды, подаваемой на установку обратного осмоса, поэтому он весь возвращается на вход этой установки на повторное использование.

Таблица 3. Характеристики работы установок электродеионизации.

Все производители установок электродеионизации предъявляют очень высокие требования к воде, подаваемой на установку ЭДИ вне зависимости от ее конструкции (табл. 4).

Таблица 4. Типичные требования производителей к питающей воде установок ЭДИ.

Для повышения надежности работы комплексных мембранных систем водоподготовки на базе ИМТ требуется использование на стадии предварительного обессоливания двухступенчатого обратного осмоса. В этом случае качество воды, питающей установку электродеионизации, заведомо выше требований производителей и любые нарушения в работе установок обратного осмоса становятся некритичными. При ухудшении эффективности работы первой ступени (естественно в допустимых пределах) заданное качество гарантированно обеспечит вторая ступень.

Комплексная мембранная установка для подготовки глубоко обессоленной воды, выполненная в соответствии с данной схемой, обеспечивает минимальный объем отходов. Отпадает необходимость в кислотно-щелочном хозяйстве, снижаются эксплуатационные расходы и резко улучшаются экологические параметры.

Такие установки наиболее целесообразны для вновь строящихся объектов. Особенно это актуально для труднодоступных районов, куда затруднен подвоз реагентов. Комплексная мембранная установка успешно эксплуатируется на .

Общим элементом во всех рассмотренных схемах обессоливания на основе мембранных методов является установка обратного осмоса. При эксплуатации водоподготовительной установки производительность постоянно меняется. Часто возникает значительное снижение производительности, связанное с остановом части теплоэнергетического оборудования или прекращения отдачи производственного пара потребителю, что ведет к проблеме обеспечения минимального расхода обрабатываемой воды через УОО.

При неполной загрузке основного оборудования блоков ПГУ-325 на снижается потребность в обессоленной воде. Это обуславливает неполную загрузку УОО. Изначально на ИвПГУ было спроектировано и эксплуатировалось 2 параллельно работающих УОО (рис. 4,а). Во время простоя одной из УОО, она либо ставится на консервацию, либо ежедневно производится циркуляция воды по корпусам УОО для предотвращения возникновения отложений. Это приводит к дополнительным потерям и увеличению себестоимости обессоленной воды.

Поскольку реагенты, используемые для консервации УОО, имеют достаточно высокую стоимость, и периодически требуется подключение второй установки обратного осмоса, то при работе одного из блоков консервация является неэффективным мероприятием.

Для предотвращения потерь, экономии химических реагентов для регенерации ФСД были предусмотрены мероприятия, позволяющие снизить дополнительные потери при простое оборудования: последовательное включение УОО 1 и УОО 2 в работу (рис. 4,б). Каждая установка включает 4 корпуса, также работающие по двухступенчатой схеме (рис. 5).

При последовательном включении установок обратного осмоса (рис. 4) пермеат с УОО 2, работающей как I ступень, подается на УОО 1 (II ступень). При этом концентрат с УОО 2 сбрасывается в канализацию, а с УОО 1 смешивается с исходной водой, подаваемой на I ступень.

Исходная вода подается на установку обратного осмоса на корпуса АО1-АО3 (рис. 5), затем пермеат подается на ФСД, а концентрат подается на АО4, где также разделяется на пермеат и концентрат. Пермеат подается на ФСД, а концентрат сбрасывается в канализацию.

После предварительных расчетов в феврале 2012 г. были проведены промышленные испытания работы УОО 1 и УОО 2, включенных последовательно. Результаты расчетов приведены в табл. 5, на рис. 6 приведены результаты испытаний.

Показатель Известкование+коагуля ция сульфатом железа Коагуляция

сульфатом

алюминия

при включении УОО в одну ступень при включении УОО в две ступени
Производительность установки, м 3 /ч 18 18 18
Суммарный часовой расход воды, поступающей на УОО, м 3 /ч 22,06 21,96 21,96
Производительность осветлителя ВТИ-100, м 3 /ч 30,2 28,65 30,03
Фильтроцикл ФСД, м 3 21240 63720 63720
Расход кислоты на регенерацию, т/год 0,54 0,16 0,16
Расход щелочи на регенерацию, т/год 0,54 0,16 0,16

Полученные данные доказывают повышение качества обессоленной воды после второй ступени обработки на УОО. Содержание ионов натрия, кремнекислоты и электропроводность снижаются более чем в 3 раза, также снижается содержание соединений железа и хлоридов.

Прослеживая динамику изменения качества обессоленной воды, можно отметить, что двухступенчатое обессоливание на УОО не позволяет достаточно снизить значение электропроводности, однако, позволяет получить требуемые параметры качества воды по содержанию соединений кремнекислоты и натрия для добавочной воды для подпитки котлов-утилизаторов. Повышение качества исходной воды для ФСД позволяет снизить ионную нагрузку на них более, чем в 3 раза, что приводит к значительному увеличению фильтроцикла, уменьшению количества воды, используемой на собственные нужды ВПУ, снижению потребности в кислоте и щелочи для регенерации. Следовательно, снижается экологический ущерб, наносимый окружающее среде.

Испытания с коагулянтом - сульфатом алюминия при двухступенчатой схеме работы установок обратного осмоса показали, что существует возможность улучшить качество воды, идущей на УОО, и повысить ресурс работы патронных фильтрующих элементов для УОО.

Таким образом, на отечественном энергетическом рынке появилось большое количество нового водоподготовительного оборудования с высокими экологическими характеристиками. Широкому внедрению их в производство мешает отсутствие нормативной базы на их использование и противоречивый опыт эксплуатации головных установок на отечественных ТЭС, особенно для вод с повышенным содержанием органических веществ.

Литература

1. СО 153-34.20.501-2003 (РД 34.20.501-95). Правила технической эксплуатации электрических станций и сетей Российской Федерации. Утв. Приказом Министерства энергетики Российской Федерации от 19 июня 2003 г. № 229. - М.: СПО ОРГРЭС, 2003.

2. Ходырев Б.Н., Кривчевцов А.Л., Соколюк А.А. Исследование процессов окисления органических веществ в теплоносителе ТЭС и АЭС // Теплоэнергетика. 2010. С. 11-16.

3. Опыт освоения новых технологий обработки воды на ТЭС / Б.М. Ларин, А.Н. Коротков, М.Ю. Опарин и др. // Теплоэнергетика. № 8. 2010. С. 8-13.

4. Проектные решения водоподготовительных установок на основе мембранных технологий / А.А. Пантелеев, Б.Е. Рябчиков, А.В.Жадан и др. // Теплоэнергетика. 2012. № 7. С. 30-36.

5. Пуск системы водоподготовки ПГУ-410 на Краснодарской ТЭЦ / А.А. Пантелеев, А.В.Жадан, С.Л. Громов и др. // Теплоэнергетика. 2012. № 7.