Технологическая схема бурения. Буровые вышки В состав буровой установки входит

Буровая установка предназначена для бурения скважин различного назначения, отличающихся глубиной, диаметральными размерами и конструкциями. Эти отличия определяются целями бурения. Скважины бурят для решения инженерных, изыскательских, геофизических, структурно-- поисковых, геологоразведочных и нефтегазодобывающих задач. При этом существенное значение имеют климатические, геологические и дорожные условия, а также среда, где проводится бурение: суша или море.

Такое многообразие факторов предполагает необходимость разработки системного ряда буровых установок. Наличие такого ряда позволяет осуществить единственно целесообразный выбор типоразмера буровой установки для заданных условий бурения.

В связи с этим все типы буровых установок подразделяют на две категории:

первая -- для эксплуатационного и глубокого разведочного бурения;

вторая -- для бурения неглубоких геологоразведочных, структурных и инженерного назначения скважин.

В нефтегазовой промышленности применяются буровые установки первой категории. Они обеспечивают бурение скважин вращательным способом для поисков и разведки месторождений, а также для добычи нефти и газа.

Анализируемая кинематическая схема.

Фамилия студента

Кинематическая схема буровой установки

Приложение

БУ 5000/320 ДГУ-1

Уралмаш 3Д - 86

Уралмаш 5Д

БУ 3200/200 ДГУ - 1

БУ 2500/160 ДГУ - М

БУ 3000 - БД

БУ 50 - БрД

БУ 75 - БрД - 70

Иванников

В соответствии с заданной кинематической схемой, выполнить описание передачи мощности от двигателей до крюка и стола ротора.

Вычислить КПД кинематической схемы от двигателей до крюка и стола ротора.

Вычислить скорости вращения валов, барабана лебёдки и стола ротора и построить диаграмму скоростей вращения.

1. Описание участка кинематической схемы, объединяющего мощность силовых двигателей

Примеры описания участка кинематической схемы выполним, используя фрагменты несколько кинематических схем.

Для более современных буровых установок применяется схема объединения мощности двигателей с применением цепной объединяющей трансмиссии.

Эта схема с малыми изменениями применяется в большинстве буровых установок. Рассмотрим её на примере БУ 80 БрД (рисунок 1)

Движение от первого дизеля передаётся через муфту на турботрансформатор. С него через карданный вал движение передаётся на ШПМ. Здесь обе полумуфты установлены на вале объединяющей трансмиссии. Полумуфта с шиной - глухо, а полумуфта с барабаном - на подшипниках качения. Поэтому потерь при такой установке муфты - нет.

Рисунок 1

С муфты движение передаётся на вал, далее через цепную передачу на выходной вал. (По рассмотренной выше причине потери в ШПМ на выходе из объединяющей трансмиссии не учитываем). С него, через карданный вал, движение передаётся на входной вал наклонного редуктора, далее через цепную передачу на входной вал коробки скоростей.

При передаче мощности от второго двигателя на коробку передач кинематическая цепочка, по сравнению с кинематической цепочкой от первого двигателя, удлиняется на одну цепную передачу и один вал.

При передаче мощности от третьего двигателя на коробку передач кинематическая цепочка ещё удлиняется на одну цепную передачу и один вал.

Формула расчёта КПД от первого двигателя до первичного вала коробки скоростей выглядит так

зд1-кор = зм * зтт * зкв * зв * зц * зв * зкв * зв * зц

зд1-кор = 0,991 * 0,9922 *0,991 0,991 *0,993 *0,991 *0,991 *0,991 *0,993 = 0,9934 = 0,711

зд2-кор = 0,9938 = 0,682

ри передаче мощности на насосы получаем такие же кинематические цепочки, только в нумерации первый и третий двигатели меняются местами.

При расчёте суммарной мощности приводов с турботрансформаторами, мощность двигателей просто складывается.

При постоянной скорости вращения валов двигателей, вторичный вал турботрансформатора будет изменять скорость вращения в зависимости от нагрузки. В среднем скорость вторичного вала турботрансформатора вдвое меньше скорости вращения вала двигателя.

2. Коробки перемены передач

Коробки перемены передач и передачи с них на лебёдку и на ротор выполняются по-разному на установках Волгоградского завода буровой техники и Уралмаш завода.

Коробки перемены передач Волгоградского завода буровой техники с планетарными передачами рассматривать не будем ввиду их редкого применения.

Наиболее часто коробки перемены передач Волгоградского завода буровой техники выполняются по схеме, ставшей почти стандартной. Рассмотрим её на примере БУ 80 БрД (рисунок 2)

Между первичным и вторичным валами коробки имеются четыре цепных передачи с различными передаточными отношениями, что позволяет вторичному валу вращаться с четырьмя скоростями. Эти четыре скорости передаются с помощью цепной передачи 5 (z=23 - z=72) на подъёмный вал лебёдки. Эти же четыре скорости через цепную передачу (z=31 - z=31), вал, коническую передачу (z=24 - z=25), вал, карданный вал передаются на ротор.

Отметим, что числа зубьев конической передачи на данной схеме не указаны. К сожаленью почти все кинематические схемы имеют такие недостатки. Найти необходимые данные можно рассмотрев другие родственные кинематические схемы. Так установки БУ 80 БрД и БУ 80 БрЭ отличаются видом применяемых двигателей. Коробки скоростей и лебёдки в них одинаковы. Используем данные с этой кинематической схемы.

При подсчёте КПД участка кинематической схемы следует учесть, что при работе может быть включена только одна скорость. Потери в цепных передачах, вращающихся в холостую считаются пренебрежительно малыми. Полумуфты для каждой из всех муфт на рассматриваемом участке кинематической схемы находятся на одном и то же вале. Следовательно - потерь в муфтах нет.

Рисунок 2

При расчёте КПД от первичного вала до крюка последовательность учёта КПД элементов следующая: КПД первичного вала коробки, КПД цепной передачи, КПД вторичного вала коробки, КПД цепной передачи, КПД подъёмного вала, КПД талевой системы. Здесь отметим, что КПД подъёмного вала отличается от КПД других валов (см. приложение 1).

КПД талевой системы также см. в приложении 1.

При расчёте КПД от первичного вала до ротора следует учесть следующие составляющие: КПД первичного вала коробки, КПД цепной передачи, КПД вторичного вала коробки, КПД цепной передачи, КПД вала, КПД конической зубчатой передачи, КПД вала, КПД карданного вала, КПД ротора.

Математическая запись КПД, будет следующей:

зпв-крюк = зв * зц * зв * зц * зпв * зтс

зпв-крюк = 0,991 * 0,993 * 0,991 * 0,993 * 0,993 * 0,9913 = 0,9924 = 0,786

Принята оснастка 4х5

зпв-ротор = зв * зц * зв * зц * зв * з кзп * зв * зкв * зротора

зпв-ротор = 0,991 * 0,993 *0,991 0,993 *0,991 *0,993 *0,991 *0,991 *0,997 = 0,9921 = 0,81

Расчёт скоростей вращения барабана лебёдки и стола ротора

Скорость вращения выходного вала двигателей равна 750об/мин.

Для удобства описания обозначим валы на которых происходит изменение скорости вращения римскими цифрами как показано на рисунке3.

На вале 1 имеем 750об/мин.

Для расчёта скорости вращения вала 2, приводимого во вращение от вала 1через цепную передачу (z=31 - z=46), выполним вычисление:

Где 31 - число зубьев звёздочки цепной передачи, находящейся на вале 1;

46 - число зубьев звёздочки цепной передачи, находящейся на вале 2.

Действуя аналогично, подсчитаем скорость вращения первичного вала 3 коробки передач:

Рисунок 3

Вторичный вал коробки передач 4 будет иметь четыре скорости.

Первая самая низкая скорость получится при наибольшем передаточном отношении:

По характеру воздейст­вия на горные породы способы бурения подразделяются:

· механический,

· термический, физико-хи­мический,

· электроискровой.

Наиболее широко применяются способы, связанные с механическим воздействием на горные породы. Механическое бурение осуществляется ударным и вращательным способами.

Ударное бурение скважин широко распространено при геолого-разведочных работах на воду, инженерно-геологи­ческих изысканиях, открытой разработке месторождений твердых полезных ископаемых, вентиляции горных выработок.

Ударное бурение . Буровой снаряд под собственным весом сверху падает на забой, разрушая долотом породу. Для равномерной обра­ботки забоя и придания скважине цилиндрической формы необходимо после каждого удара снаряд поворачивать на некоторый угол. По мере разрушения породы канат постепенно сматывают с барабана лебедки, подавая долото вслед за продвигающимся забоем.

Принципиальная схема ударно-канатного механи­ческого бурения изображена на рисунке 1.

Рисунок 1. Схема ударно-канатного бурения

1 – долото

2 – ударная штанга

3 – раздвижная штанга

4 – канатный замок

5 – канат

9 – мачта

10, 12 – ролики

13 – барабан лебедки

Долото (рисунок 2) служит для разрушения породы на забое и обра­ботки стенок скважины. Основные элементы долота - рабочая головка с лезвиями 1, корпус 2, шейка с плоскими выемками 3для захвата инструментальным ключом и резьбовой конус 4для соединения с ниж­ним концом ударной штанги.

В зависимости от разбуриваемых пород применяют долота с головками разной формы:

· плоское;

· крестовое;

· широкобортное.


Рисунок 2. Долота для долота ударно-канатного бурения:

а-плоское; б-крестовое; в - широкоборт­ное

В процессе бурения на забое скважины должна быть вода, в которой частицы разрушенной породы находятся во взвешенном состоянии. При достижении определенной величины плотности шлама долбление по­роды прекращают, лебедкой извлекают снаряд на поверхность и проводят чистку скважины.

Для предотвращения осыпания стенок в скважину спускают обсадные трубы.

Вращательное бурение. При бурении нефтяных и газовых скважин применяют вращательный метод, при котором скважина как бы высвер­ливается непрерывно вращающимся долотом. Разбуренные частицы породы в процессе бурения выносятся на поверхность непрерывно циркулирующей струей бурового раствора или нагнетаемым в скважину воздухом или газом. В зависимости от местонахождения двигателя вращательное бурение разделяют на роторное двигатель находится на поверхности и приводит во вращение долото на забое колонной буриль­ных труб и бурение с забойным двигателем (гидравлическим или при помощи электробура) - двигатель переносится к забою скважины и уста­навливается над долотом.

Процесс бурения состоит из следующих операций: спуско-подъемных работ (опускание бурильных труб с долотом в скважину до забоя и подъем бурильных труб с отработанным долотом из скважины) и работы долота на забое (разрушение породы долотом). Эти операции периодически прерываются для спуска обсадных труб в скважину, чтобы предохранять стенки скважины от обвалов и разобщить нефтяные (газовые) и водяные горизонты.

Одновременно в процессе бурения скважин выполняют следующие вспомогательные работы: отбор керна, приготовление промывочной жидкости (бурового раствора), каротаж, замер кривизны, освоение скважины с целью вызова притока нефти (газа) в скважину и т. п. В случае аварии или осложнения (поломка бурильных труб, прихват инструмента и т.д.) возникает необходимость в дополнительных (ава­рийных) работах. Схема буровой для осуществления вращательного метода бурения показана на рисунке 3.


Рисунок 3. Схема буровой установки для глубокого

вращательного бурения:

1 - долото; 2 - гидравлический забойный двигатель (при роторном бурении не устанавливается); 3 - бурильная труба; 4-бурильный замок; 5-лебедка; 6-двигатели лебедки и ротора; 7-верглюг; 5-талевый канат; 9-талевый блок; 10 крюк; 11-буровой шланг; 12-ведушая труба; 13-ротор; 14-вышка; 15-желоба; 16-обвязка насоса; 17-буровой насос; 18-двигатель насоса; 19-приемный резервуар (емкость)

Самая верхняя труба в колонне бурильных труб не круглая, а квад­ратная (она может быть также шестигранной или желобчатой). Она называется ведущей бурильной трубой. Ведущая труба проходит через отверстие круглого стола (ротора) и при бурении скважины по мере углубления забоя опускается вниз. Ротор помещается в центре буровой вышки. Бурильные трубы и ведущая труба внутри полые. Ведущая труба верхним концом соединяется с вертлюгом. Нижняя часть вертлюга, соединенная с ведущей трубой, может вращаться вместе с колонной бурильных труб, а его верхняя часть всегда неподвижна.

К отверстию (горловине) неподвижной части вертлюга присоеди­няется гибкий шланг, через который в процессе бурения закачивается в скважину промывочная жидкость при помощи буровых насосов. Жидкость через ведущую трубу и всю колонну бурильных труб попадает в долото и через отверстия в нем устремляется на забой скважины (при бурении гидравлическим двигателем промывочная жидкость вначале поступает в него, приводя вал двигателя во вращение, а затем в долото.) Выходя из отверстий в долоте, жидкость промывает забой, подхваты­вает частицы разбуренной породы и вместе с ними через кольцевое пространство между стенками скважины и бурильными трубами подни­мается наверх, где направляется в прием насосов, предварительно очищаясь на своем пути от частиц разбуренной породы.

К верхней части (неподвижной) вертлюга шарнирно прикреплен штроп, при помощи которого вертлюг подвешивается на подъемном крюке, связанном с подвижным талевым блоком. На самом верху буровой вышки установлен кронблок, состоящий из нескольких роликов. Во время бурения колонна труб висит на крюке и опускается по мере углубления. Как только долото срабатывается, всю колонну труб поднимают на поверхность для его замены.

Пробурив с поверхности земли скважину на глубину 30-600 м, в нее спускают кондуктор, служащий для перекрытия слабых (неустойчивых) пород или верхних притоков воды и для создания вертикального направления ствола скважины при дальнейшем бурении. После спуска кондуктора проводят цементирование (тампонаж), т.е. закачивают це­ментный раствор через обсадные трубы в кольцевое пространство между ними и стенками скважины. Цементный раствор, поднимаясь вверх, заполняет затрубное пространство. После затвердения цементного раст­вора бурение возобновляется.

В скважину спускают долото, диаметр которого меньше диаметра предыдущей обсадной колонны. Затем в пробуренную до проектной глубины скважину опускают колонну обсадных труб (эксплуатационную колонну) и цементируют ее. Цементирование проводят для того, чтобы изолировать друг от друга водоносные и нефтеносные пласты. Если при бурении под эксплуатационную колонну возникают большие осложне­ния, препятствующие успешному бурению, то после кондуктора спу­скают одну или две промежуточные (технические) колонны.

). Буровой инструмент включает также ударную штангу 2 и канатный замок 3. Он подвешивается на канате 4, который перекинут через блок 5, установленный на какой-либо мачте (условно не показана). Возвратно-поступательное движение бурового инструмента обеспечивает буровой станок 6.


Рис. 4.7.

По мере углубления скважины канат удлиняют. Цилиндричность скважины обеспечивается поворотом долота во время работы.

Для очистки забоя от разрушенной породы буровой инструмент периодически извлекают из скважины, а в нее опускают желонку, похожую на длинное ведро с клапаном в дне. При погружении желонки в смесь из жидкости (пластовой или наливаемой сверху) и разбуренных частиц породы клапан открывается и желонка заполняется этой смесью. При подъеме желонки клапан закрывается и смесь извлекается наверх.

По завершении очистки забоя в скважину вновь опускается буровой инструмент и бурение продолжается.

Во избежание обрушения стенок скважины в нее спускают об- садную трубу, длину которой наращивают по мере углубления забоя.

В настоящее время при бурении нефтяных и газовых скважин ударное бурение в нашей стране не применяют.

Нефтяные и газовые скважины сооружаются методом вращательного бурения. При данном способе породы дробятся не ударами, а разрушаются вращающимся долотом, на которое действует осевая нагрузка. Крутящий момент передается на долото или с поверхности от вращателя (ротора) через колонну бурильных труб (роторное бурение) или от забойного двигателя (турбобура, электробура, винтового двигателя), установленного непосредственно над долотом.

Турбобур – это гидравлическая турбина, приводимая во вращение с помощью нагнетаемой в скважину промывочной жидкости. Электробур представляет собой электродвигатель, защищенный от проникновения жидкости, питание к которому подается по кабелю с поверхности. Винтовой двигатель – это разновидность забойной гидравлической машины, в которой для преобразования энергии потока промывочной жидкости в механическую энергию вращательного движения использован винтовой механизм.

Буровые установки, оборудование и инструмент

Бурение скважин осуществляется с помощью буровых установок, оборудования и инструмента.

Буровые установки. Буровая установка – это комплекс наземного оборудования, необходимый для выполнения операций по проводке скважины. В состав буровой установки входят (рис. 4.8):

  • буровая вышка;
  • оборудование для механизации спуско-подъемных операций;
  • наземное оборудование, непосредственно используемое при бурении;
  • силовой привод;
  • циркуляционная система бурового раствора;
  • привышечные сооружения.


увеличить изображение
Рис. 4.8.

Выпускаются отечественные буровые установки:

Буровая вышка – это сооружение над скважиной для спуска и подъема бурового инструмента, забойных двигателей, бурильных и обсадных труб, размещения бурильных свечей (соединение двух-трех бурильных труб между собой длиной 25 36 м) после подъема их из скважины и защиты буровой бригады от ветра и атмосферных осадков.

Различают два типа вышек: башенные и мачтовые. Их изготавливают из труб или прокатной стали.

Башенная вышка представляет собой правильную усеченную четырехгранную пирамиду решетчатой конструкции. Ее основными элементами являются ноги, ворота, балкон верхнего рабочего, подкронблочная площадка, козлы, поперечные пояса, стяжки, маршевая лестница.

Вышки мачтового типа бывают одноопорные (рис. 4.9) и двухопорные (Л-образные). Последние наиболее распространены (рис. 4.10).

А-образные вышки более трудоемки в изготовлении и поэтому более дороги. Они менее устойчивы, но их проще перевозить с места на место и затем монтировать.

Основные параметры вышки – грузоподъемность, высота, емкость "магазинов" (хранилищ для свечей бурильных труб), размеры верхнего и нижнего оснований; длина свечи, масса.

Грузоподъемность вышки – это предельно допустимая вертикальная статическая нагрузка, которая не должна быть превышена в процессе всего цикла проводки скважины.

Высота вышки определяет длину свечи, которую можно извлечь из скважины и от величины которой зависит продолжительность спускоподъемных операций. Чем больше длина свечи, тем на меньшее число частей необходимо разбирать колонну бурильных труб при смене бурового инструмента. Сокращается и время последующей сборки колонны. Поэтому с ростом глубины бурения высота и грузоподъемность вышек увеличиваются. Так, для бурения скважин на глубину 300 500 м используется вышка высотой 16 18 м, глубину 2000 3000 м – высотой – 42 м и на глубину 4000 6500 м – 53 м.

Емкость "магазинов" показывает какая суммарная длина бурильных труб диаметром 114 168 мм может быть размещена в них. Практически вместимость "магазинов" показывает на какую глубину может быть осуществлено бурение с помощью конкретной вышки. Размеры верхнего и нижнего оснований характеризуют условия работы буровой бригады с учетом размещения бурового оборудования, бурильного инструмента и средств механизации спускоподъемных операций. Размер верхнего основания вышек составляет 2x2 м или 2,6x2,6 м, нижнего 8x8 м или 10x10 м.

Общая масса буровых вышек составляет несколько десятков тонн.

Оборудование для механизации спуско-подъемных операций включает талевую систему и лебедку. Талевая система состоит из неподвижного кронблока (рис. 4.11), установленного в верхней части буровой вышки, талевого блока (рис. 4.12), соединенного с кронблоком талевым канатом, один конец которого крепится к барабану лебедки, а другой закреплен неподвижно, и бурового крюка. Талевая система является полиспастом (системой блоков), который в буровой установке предназначен в основном, для уменьшения натяжения талевого каната, а также для снижения скорости движения бурильного инструмента, обсадных и бурильных труб.

Буровая установка или или просто буровая - это комплекс бурового оборудования и сооружений, предназначенных для бурения скважин и выполняющий одну, главную работу - делать дыру для краника, из которого польются «живые деньги» в виде нефти или газа.

Репортаж о глубоком бурении на глубине 3-4 км под землей. Для любителей суровой техники.

Оренбургская область. Облет буровой установки в процессе монтажа:



Оренбургская степь невероятной красоты, как на картине:

Первая посадка - у буровой 5115. Буровая установка ZJ50DBS производства китайской компании Sichuan Honghua Petroleum Equipment Co. Ltd. Здесь буровые называют станками. Одна буровая установка стоит порядка 15 млн. долларов:

Буровые очень прожорливы - такой станок употребляет по 4 тонны дизельного топлива в час.

Насосы для закачки бурового раствора. Такой раствор, подаваемый по трубам в скважину, вращает бур с алмазными насадками:

Как уже говорилось, буровая на разведанном месторождении выполняет одну, главную работу - делает дыру для краника, из которого польются живые деньги. Нефте- или газодобывающая компания заказывает такую работу на своей земле и щедро платит за нее:

Глубина такой скважины - 3-4 км. Причем, идти она может не вертикально, а под углом. Вышка стоит здесь, а скважина бурится где-нибудь в километре отсюда.

Рабочие в приватной беседе похвалили свою буровую: «Хороший станок, надежный»:

Наши транспортные средства - в одном Ми-8 летят акционеры, в другом - журналисты:

Взлетаем:

Вторая посадка у буровой №13 (скважина 4015) на Лебяжинском месторождении. Здесь, на нефтяных полях, принадлежащих ТНК-BP, работает компания «Газпром Бурение». Эта буровая ничем не отличается от той, где мы были час назад:

Желтое - это не горка, а желоб аварийной эвакуации с буровой:

Облетев пятнадцать буровых в разных стадиях монтажа и работы, мы попрощались с Оренбургом и отправились в Новый Уренгой.

Мы летим за 200 км, где на берегу Тазовской губы работает буровая №7 компании «НЭУ». Облачность низкая, погоды нет, нас долго не выпускали из аэропорта и вертолет летит низко, над самой тундрой:

Где-то там, недалеко по местным меркам, в тот день летал с журавлями :

Тазовская губа - часть Обской губы Карского моря. Это уникальное Юрхаровское месторождение - 100 миллиардов кубометров газа:

Подлетаем к буровой. Она уже немало потрудилась в этом месте:

После посадки наши вертолет сразу начало засасывать в песок. Потом еле взлетели:

Здесь уже все знакомо и я, кажется, начинаю неплохо разбираться в технологии бурения:

Жилой комплекс для вахтовых рабочих газоперерабатывающего завода:

Трудные дороги Ямала. Грузовик застрял:

По пути в Новый Уренгой облетели усовершенствованную буровую ВТБ-Лизинг - установка поставлена на рельсы и движется по ним. Все отечественного производства. Колоссальная экономия времени на разборку/сборку станка. Он так и передвигается в собранном состоянии:

Ну и под конец пара кадров с одного из участков хранения буровых. В тот день на этом участке находились на хранении четыре установки, которые планируются к модернизации: