Технико-экономическая оптимизация утилизации теплоты вытяжного воздуха в системах вентиляции и кондиционирования. Особенности и порядок расчета вытяжной и приточной вентиляции Эффективность систем кондиционирования воздуха с утилизаторами тепла

В системе кондиционирования воздуха теплоту удаляемого воздуха из помещений можно утилизировать двумя способами:

· Применяя схемы с рециркуляцией воздуха;

· Устанавливая утилизаторы теплоты.

Последний способ, как правило, применяют в прямоточных схемах систем кондиционирования воздуха. Однако использование утилизаторов теплоты на исключается и в схемах с рециркуляцией воздуха.

В современных системах вентиляции и кондиционирования воздуха применяется самое разнообразное оборудование: нагреватели, увлажнители, различные виды фильтров, регулируемые решетки и многое другое. Все это необходимо для достижения требуемых параметров воздуха, поддержания или создания комфортных условий для работы в помещении. На обслуживание всего этого оборудования требуется достаточно много энергии. Эффективным решением сбережения энергии в системах вентиляции становятся теплоутилизаторы. Основной принцип их работы – нагрев потока воздуха, подаваемого в помещение, с использованием теплоты потока, удаляемого из помещения. При использовании теплоутилизатора требуется меньшая мощность калорифера на подогрев приточного воздуха, тем самым уменьшается количество энергии, необходимое для его работы.

Утилизация теплоты в зданиях с кондиционированием воздуха может быть произведена посредством утилизации теплоты вентиляционных выбросов. Утилизация сбросной теплоты для нагрева свежего воздуха (или охлаждение поступающего свежего воздуха сбросным воздухом после системы кондиционирования летом) является простейшей формой утилизации. При этом можно отметить четыре типа систем утилизации, о которых уже упоминалось: вращающиеся регенераторы; теплообменники с промежуточным теплоносителем; простые воздушные теплообменники; трубчатые теплообменники. Вращающийся регенератор в системе кондиционирования воздуха может повышать температуру приточного воздуха зимой на 15 °С, а летом он может снижать температуру поступающего воздуха на 4-8 °С {6.3). Как и в других системах утилизации, за исключением теплообменника с промежуточным теплоносителем, вращающийся регенератор может функционировать только в том случае, если вытяжной и всасывающий каналы прилегают друг к другу в какой-то точке системы.



Теплообменник с промежуточным теплоносителем менее эффективен, чем вращающийся регенератор. В представленной системе вода циркулирует через два теплообменных змеевика, и так как применяется насос, то два змеевика могут быть расположены на некотором расстоянии друг от друга. И в этом теплообменнике, и во вращающемся регенераторе имеются подвижные части (насос и электродвигатель приводятся в движение и это отличает их от воздушного и трубчатого теплообменников. Одним из недостатков регенератора является то, что в каналах может происходить загрязнение. Грязь может осаждаться на колесе, которое затем переносит его во всасывающий канал. В большинстве колес в настоящее время предусмотрена продувка, которая сводит перенос загрязнений до минимума.

Простой воздушный теплообменник представляет собой стационарное устройство для теплообмена между отработанным и поступающим потоками воздуха, проходящими через него противотоком. Этот теплообменник напоминает прямоугольную стальную коробку с открытыми концами, разделенную на множество узких каналов типа камер. По чередующимся каналам идет отработанный и свежий воздух, и теплота передается от одного потока воздуха к другому просто через стенки каналов. Перенос загрязнений в теплообменнике не происходит, и поскольку значительная площадь поверхности заключена в компактном пространстве, достигается относительно высокая эффективность. Теплообменник с тепловой трубой можно рассматривать как логическое развитие конструкции вышеописанного теплообменника, в котором два потока воздуха в камеры остаются абсолютно раздельными, связанными пучком ребристых тепловых труб, которые переносят теплоту от одного канала к другому. Хотя стенка трубы может рассматриваться как дополнительное термическое сопротивление, эффективность теплопередачи внутри самой трубы, в которой происходит цикл испарения-конденсации, настолько велика, что в этих теплообменниках можно утилизировать до 70% сбросной теплоты. Одно из основных преимуществ этих теплообменников по сравнению с теплообменником с промежуточным теплоносителем и вращающимся регенератором - их надежность. Выход из строя нескольких труб лишь незначительно снизит эффективность работы теплообменника, но не остановит полностью систему утилизации.

При всем многообразии конструктивных решений утилизаторов тепла вторичных энергоресурсов в каждом из них имеются следующие элементы:

· Среда- источник тепловой энергии;

· Среда- потребитель тепловой энергии;

· Теплоприемник- теплообменник, воспринимающий тепло от источника;

· Теплопередатчик- теплообменник, передающий тепловую энергию потребителю;

· Рабочее вещество, транспортирующее тепловую энергию от источника к потребителю.

В регенеративных и воздуховоздушных (воздухожидкостных) рекуперативных теплоутилизаторах рабочим веществом являются сами теплообменивающиеся среды.

Примеры применения.

1. Подогрев воздуха в системах воздушного отопления.
Калориферы предназначены для быстрого нагрева воздуха с помощью водяного теплоносителя и равномерного его распределения с помощью вентилятора и направляющих жалюзи. Это хорошее решение для строительства и производственных цехов, где требуется быстрый нагрев и поддержание комфортной температуры только в рабочее время (в это же время, как правило, работают и печи).

2. Нагрев воды в системе горячего водоснабжения.
Применение теплоутилизаторов позволяет сгладить пики потребления энергии, так как максимальное потребление воды приходится на начало и конец смены.

3. Подогрев воды в системе отопления.
Закрытая система
Теплоноситель циркулирует по замкнутому контуру. Таким образом, отсутствует риск его загрязнения.
Открытая система. Теплоноситель нагревается горячим газом, а затем отдает тепло потребителю.

4. Подогрев дутьевого воздуха, идущего на горение. Позволяет сократить потребление топлива на 10%–15%.

Подсчитано, что основным резервом экономии топлива при работе горелок для котлов, печей и сушилок является утилизация теплоты отходящих газов путем нагрева воздухом сжигаемого топлива. Рекуперация тепла отходящих дымовых газов имеет большое значение в технологических процессах, поскольку тепло, возвращенное в печь или котел в виде подогретого дутьевого воздуха, позволяет сократить потребление топливного природного газа до 30 %.
5. Подогрев топлива, идущего на горение с использованием теплообменников "жидкость – жидкость". (Пример – подогрев мазута до 100˚–120˚ С.)

6. Подогрев технологической жидкости с использованием теплообменников "жидкость – жидкость". (Пример – подогрев гальванического раствора.)

Таким образом, теплоутилизатор – это:

Решение проблемы энергоэффективности производства;

Нормализация экологической обстановки;

Наличие комфортных условий на вашем производстве – тепла, горячей воды в административно-бытовых помещениях;

Уменьшение затрат на энергоресурсы.

Рисунок 1.

Структура энергопотребления и потенциала энергосбережения в жилых зданиях: 1 – трансмиссионные теплопотери; 2 – расход теплоты на вентиляцию; 3 – расход теплоты на горячее водоснабжение; 4– энергосбережение

Список использованной литературы.

1. Караджи В. Г., Московко Ю.Г.Некоторые особенности эффективного использования вентиляционно-отопительного оборудования. Руководство - М., 2004

2. Еремкин А.И, Бызеев В.В. Экономика энергоснабжения в системах отопления, венталиции и кондиционирования воздаха. Издателество Ассоциации строительных вузов М., 2008.

3. Сканави А. В., Махов. Л. М. Отопление. Издательство АСВ М., 2008

Предыстория развития

Тепло воздуха, который удаляется в атмосферу, является источником экономии энергоресурсов. Не секрет, что на подогрев воздуха, который поступает в здание расходуется 40…80% теплозатрат. Поэтому идея подогрева свежего воздуха за счет отработанного не нова. Еще в Советском Союзе непрерывно велись работы по созданию установок, которые бы позволяли использовать тепловую энергию вытяжного воздуха. Но к сожалению результаты этих исследований использовались только в специальных проектах (промышленного, оборонного назначения, научного значения).

За границей причиной применения, обуславливающей начало применения подобных установок, стал первый энергетический кризис. При этом, устройства утилизации тепловой энергии удаляемого воздуха, изначально проектировались для использования в многоквартирных жилых домах и коттеджах. Как следствие этого, сегодня воздушное отопление повсеместно применяется в Канаде и ближайших к ней штатах США. Так в Канаде не применяются вовсе водяные системы отопления.

В России утилизаторы тепла массово начали применяться с началом активного малоэтажного строительства, когда у частных застройщиков начал появляться интерес к энергоэффективному, энергосберегающему оборудованию.

Применение электроэнергии для отопления

Использование вентиляционной отопительной техники подразумевает применение электроэнергии для отопления. До недавнего времени применение электроэнергии для отопления было запрещено законодательно. Это связано с политикой экономии энергии, проводимой в Советском Союзе. Со времени распада Советского Союза многое изменилось.

В настоящее время, когда начинают применяться новые материалы и осваиваться новые технологии, мнение специалистов о допустимости применения электроэнергии для отопления начинает меняться. Ввод в действие 2000 года новых норм, которые требуют улучшения теплозащиты жилых зданий, способствует этому. Согласно новых норм, нормируемые потери тепла через наружные стены сокращаются в 2,5–3,0 раза по сравнению с нормами 1995 г.

В будущем нормы по теплозащите и энергоэффективности будут только ужесточаться. В этих условиях исчезнет само понятие инфильтрации воздуха, помещения будут герметичными. В таких условиях применению устройств утилизации тепла откроются самые широкие перспективы.

Существующие виды рекуператоров

Настоящая номенклатура утилизаторов тепла очень разнообразна. Но все разнообразие можно свести к следующим типам: а) кожухотрубные и пластинчатые теплообменники, в том числе, перекрёстноточные; б) роторные (регенеративные); в) тепловые насосы с промежуточным рабочим телом. Возможности большинства современных устройств позволяют утилизировать и использовать для подогрева подаваемого в помещения воздуха только 60% тепла отработанного воздуха. Для объектов с небольшим объемом здания для того, чтобы установка утилизатора тепла окупилась необходимо, чтобы эта цифра составляла 90 %.

Перспективное направление развития утилизаторов тепла

Увеличить КПД утилизаторов тепла позволяет применение описанного ниже метода. Как известно, теплоемкость воды наибольшая по сравнению с другими жидкостями. Теплоёмкость воздуха в 4,5 раза ниже теплоёмкости воды. На использовании воды основана технология ультра-дисперсии удаляемого воздуха в воде. Для того чтобы увеличить скорость передачи тепла от удаляемого воздуха этот воздух специальным образом пропускают через воду, создавая пузырьки размером с микрон.

Скорость передачи тепла увеличивается так как микронных размеров пузырьки разрушают термическое сопротивления поверхностного слоя воды. Применение технологии технология ультра-дисперсии удаляемого воздуха в воде позволит использовать 90-95% тепла удаляемого воздуха. Важно, что рекуператор, построенный по указанной технологии, имеет минимальное число деталей, минимальные размеры, он прост в эксплуатации.

Способы применения утилизаторов тепла

  • Первый способ – применение теплоутилизатора рекуперативного типа. При этом имеет место частичный подогрев подаваемого в помещение воздуха.
  • Второй способ – утилизация теплоты с помощью тепловых насосов.
  • Третий способ – использование тепла уходящего воздуха для подогрева поступающей воды. Система включает в себя значительного габарита водонагреватели и аккумуляторы подогретой воды.

Современное положение дел в России по рассматриваемому вопросу

Федеральным законом № 261-ФЗ «Об энергосбережении и повышении энергетической эффективности…» предписано снизить энергоемкость инженерных систем здания. Стоит задача к 2020 году снизить энергоемкость ВВП на 40% к уровню 2007 года. Такая тенденция на увеличение энергоэффективности, улучшение теплозащиты повсеместна.

Постановлением Правительства Москвы № 900 от 5 октября 2010 года «О повышении энергетической эффективности жилых, социальных и общественно-деловых зданий в городе Москве…», установлен уровень энергопотребления, обеспечить невозможно без утилизации тепла.

Российская Федерация, вступив в ВТО, обязалась привести цены на энергоносители для внутренних потребителей к уровню мировых цен. Во всем мире вопросы энергоэффективности, а как следствие вопросы утилизации тепла стоят очень остро. Правительства стран вводят в действие и добиваются исполнения программ по улучшению энергоэффективности. Поэтому с ростом внутренних цен на энергоносители неизбежно будет расти интерес к установкам по утилизации тепла

В «русской печи» нагревался приточный воздух, с помощью этого прогревалось жилое помещение. В Европе систему отопления, где как в русской печи предусматривались каналы, называли «русской». Этим признана большая эффективность русской печи в сравнении с европейским отоплением. В настоящее время можно говорить о необходимости вернуться к истокам в вопросах отопления.

Приточно-вытяжная вентиляция с рекуперацией








Сегодня энергосбережение является приоритетным направлением развития мировой экономики. Истощение естественных энергетических запасов, повышение стоимости тепловой и электрической энергии неминуемо приводит нас к необходимости разработки целой системы мероприятий, направленных на повышения эффективности работы энергопотребляющих установок. В этом контексте снижение потерь и вторичное использования затрачиваемой тепловой энергии становится действенным инструментом в решении поставленной проблемы.

В условиях активного поиска резервов экономии топливно-энергетических ресурсов все большее внимание привлекает проблема дальнейшего совершенствования систем кондиционирования воздуха как крупных потребителей тепловой и электрической энергии. Важную роль в решении этой задачи призваны сыграть мероприятия по повышению эффективности работы тепломассообменных аппаратов, составляющих основу подсистемы политропной обработки воздуха, затраты на функционирование которой достигают 50 % всех затрат на эксплуатацию СКВ.

Утилизация тепловой энергии вентиляционных выбросов является одним из ключевых методов экономии энергетических ресурсов в системах кондиционирования воздуха и вентиляции зданий и сооружений различного назначения. На рис. 1 приведены основные схемы утилизации теплоты вытяжного воздуха, реализуемые на рынке современного вентиляционного оборудования.

Анализ состояния производства и применения теплоутилизационного оборудования за рубежом указывает на тенденцию преимущественного использования рециркуляции и четырех типов утилизаторов теплоты вытяжного воздуха: вращающихся регенеративных, пластинчатых рекуперативных, на базе тепловых труб и с промежуточным теплоносителем. Применение этих устройств зависит от условий работы систем вентиляции и кондиционирования воздуха, экономических соображений, взаимного расположения приточных и вытяжных центров, эксплуатационных возможностей .

В табл. 1 приведен сравнительный анализ различных схем утилизации теплоты вытяжного воздуха. Среди основных требований со стороны инвестора к теплоутилизационным установкам следует отметить: цену, эксплуатационные затраты и эффективность работы. Наиболее дешевые решения характеризуются простотой конструкции и отсутствием движущихся частей, что позволяет выделить среди представленных схем установку с перекрестноточным рекуператором (рис. 2) как наиболее соответствующую для климатических условий европейской части России и Польши.

Исследования последних лет в области создания новых и совершенствования существующих теплоутилизационных установок систем кондиционирования воздуха указывают на отчетливую тенденцию разработки новых конструктивных решений пластинчатых рекуператоров (рис. 3), решающим моментом при выборе которых является возможность обеспечения режимов безаварийной работы установки в условиях конденсации влаги при отрицательных температурах наружного воздуха.

Температура наружного воздуха, начиная с которой наблюдается образование инея в каналах вытяжного воздуха, зависит от следующих факторов: температуры и влажности удаляемого воздуха, отношения расходов приточного и удаляемого воздуха, конструктивных характеристик. Отметим особенность работы теплоутилизаторов при отрицательных температурах наружного воздуха: чем выше эффективность теплообмена, тем больше опасность появления инея на поверхности каналов вытяжного воздуха.

В связи с этим низкая эффективность теплообмена в перекрестноточном теплоутилизаторе может оказаться преимуществом с точки зрения снижения опасности обледенения поверхностей каналов вытяжного воздуха. Обеспечение безопасных режимов как правило связано с реализацией следующих традиционных мер по предотвращению обмерзания насадки: периодическое отключение подачи наружного воздуха, его байпасирование или предварительный подогрев, осуществление которых безусловно снижает эффективность утилизации теплоты вытяжного воздуха .

Одним из путей решения этой проблемы является создание теплообменных аппаратов, в которых обмерзание пластин либо отсутствует, либо наступает при более низких температурах воздуха. Особенностью работы воздухо-воздушных утилизаторов теплоты является возможность реализации процессов тепломассопереноса в режимах «сухого» теплообмена, одновременного охлаждения и осушения удаляемого воздуха с выпадением конденсата в виде росы и инея на всей или части теплообменной поверхности (рис. 4).

Рациональное использование теплоты конденсации, величина которой при определенных режимах работы теплоутилизаторов достигает 30 %, позволяет существенно увеличить диапазон изменения параметров наружного воздуха, при которых обледенение теплообменных поверхностей пластин не происходит. Однако решение задачи определения оптимальных режимов работы рассматриваемых теплоутилизаторов, соответствующих определенным эксплуатационным и климатическим условиям, и области его целесообразного применения, требует детальных исследований тепломассообмена в каналах насадки с учетом процессов конденсации и инееобразования.

В качестве основного метода исследования выбран численный анализ. Он обладает и наименьшей трудоемкостью, и позволяет определить характеристики и выявить закономерности процесса на основании обработки информации о влиянии исходных параметров. Поэтому экспериментальные исследования процессов тепломассопереноса в рассматриваемых аппаратах проводились в значительно меньшем объеме и, в основном, для проверки и корректировки зависимостей, полученных в результате математического моделирования.

При физико-математическом описании тепломассообмена в исследуемом рекуператоре было отдано предпочтение одномерной модели переноса (ε-NTUмодель). В этом случае течение воздуха в каналах насадки рассматривается как поток жидкости с постоянными по его сечению скоростью, температурой и потенциалом массопереноса, равными среднемассовым значениям . С целью повышения эффективности утилизации теплоты в современных теплообменниках используется оребрение поверхности насадки.

Тип и расположение ребер значительно влияет на характер протекания процессов тепломассообмена. Изменение температуры по высоте ребра приводит к реализации различных вариантов процессов тепломассообмена (рис. 5) в каналах удаляемого воздуха, что существенно усложняет математическое моделирование и алгоритм решения системы дифференциальных уравнений.

Уравнения математической модели процессов тепломассопереноса в перекрестно-точном теплообменнике реализуются в ортогональной системе координат с осями ОX и ОY, направленными параллельно потокам холодного и теплого воздуха соответственно, и осями Z1 и Z2, перпендикулярной поверхности пластин насадки в каналах приточного и удаляемого воздуха (рис. 6), соответственно.

В соответствии с допущениями данной ε-NTU-модели тепломассоперенос в исследуемом утилизаторе описывается дифференциальными уравнениями теплового и материального балансов, составляемых для взаимодействующих потоков воздуха и насадки с учетом теплоты фазового перехода и термического сопротивления образующегося слоя инея. Для получения однозначного решения система дифференциальных уравнений дополняется граничными условиями, устанавливающими значения параметров обменивающихся сред на входах в соответствующие каналы рекуператора.

Сформулированная нелинейная задача не может быть решена аналитически, поэтому интегрирование системы дифференциальных уравнений осуществлялось численными методами. Достаточно большой объем проведенных численных экспериментов, проведенных на ε-NTU-моделе, позволил получить массив данных, который был использован для анализа характеристик процесса и выявления его общих закономерностей.

В соответствии с задачами исследования работы теплоутилизатора выбор изучаемых режимов и диапазоны варьирования параметров обменивающихся потоков осуществлялся так, чтобы наиболее полно моделировались реальные процессы тепломассообмена в насадке при отрицательных значениях температуры наружного воздуха, а также условия протекания наиболее опасных с точки зрения эксплуатации вариантов режимов работы теплоутилизационного оборудования.

Представленные на рис. 7-9 результаты расчета режимов работы исследуемого аппарата, характерных для климатических условий с низкой расчетной температурой наружного воздуха в зимний период времени года, позволяют судить о качественно ожидавшейся возможности образования трех зон активного тепломассообмена в каналах удаляемого воздуха (рис. 6), отличающихся по характеру протекающих в них процессов.

Анализ тепломассообменных процессов, протекающих в этих зонах, позволяет оценить возможные пути реализации эффективного улавливания теплоты удаляемого вентиляционного воздуха и снижения опасности образования инея в каналах насадки теплообменника на основе рационального использования теплоты фазового перехода. На основании проведенного анализа установлены граничные температуры наружного воздуха (табл. 2), ниже которых наблюдается образование инея в каналах вытяжного воздуха.

Выводы

Представлен анализ различных схем утилизации теплоты вентиляционных выбросов. Отмечены преимущества и недостатки рассмотренных (существующих) схем утилизации теплоты вытяжного воздуха в установках вентиляции и кондиционирования воздуха. На основе проведенного анализа предложена схема с пластинчатым перекрестноточным рекуператором:

  • на базе математической модели разработан алгоритм и программа расчета на ЭВМ основных параметров тепломассообменных процессов в исследуемом теплоутилизаторе;
  • установлена возможность образования различных зон конденсации влаги в каналах насадки утилизатора, в пределах которых характер тепломассообменных процессов существенно меняется;
  • анализ полученных закономерностей позволяет установить рациональные режимы работы исследуемых аппаратов и области их рационального использования для различных климатических условий российской территории.

УСЛОВНЫЕ ОБОЗНАЧЕНИЯ И ИНДЕКСЫ

Условные обозначения: h реб — высота ребра, м; l реб — длина ребра, м; t — температура, °C; d — влагосодержание воздуха, кг/кг; ϕ — относительная влажность воздуха, %; δ реб — толщина ребра, м; δ ин — толщина слоя инея, м.

Индексы: 1 — наружный воздух; 2 — удаляемый воздух; e — на входе в каналы насадки; р еб — ребро; ин — иней, o — на выходе из каналов насадки; рос — точка росы; sat — состояние насыщения; w — стенка канала.

В данной статье мы предлагаем рассмотреть пример использования современных утилизаторов тепла (рекуператоров) в вентиляционных установках, в частности роторных.

Основные применяемые типы роторных утилизаторов (рекуператоров) в вентиляционных установках:

а) конденсационный ротор – утилизирует преимущественно явное тепло. Перенос влаги осуществляется, если вытяжной воздух охлаждается на роторе до температуры ниже «точки росы».
б) энтальпийный ротор – имеет гигроскопическое покрытие фольги, способствующее переносу влаги. Таким образом, утилизируется полное тепло.
Рассмотрим систему вентиляции, в которой будут работать оба типа утилизатора (рекуператора).

Примем, что объектом расчета является группа помещений в неком здании, например, в Сочи или Баку, расчет произведем только на теплый период:

Параметры наружного воздуха:
температура наружного воздуха в теплый период, с обеспеченностью 0,98 – 32°С;
энтальпия наружного воздуха в теплый период года – 69 кДж/кг;
Параметры внутреннего воздуха:
температура внутреннего воздуха – 21°С;
относительная влажность внутреннего воздуха – 40-60%.

Требуемый расход воздуха на ассимиляцию вредностей в этой группе помещений составляет 35000 м³/ч. Луч процесса помещения – 6800 кДж/кг.
Схема воздухораспределения в помещениях – «снизу-вверх» низкоскоростными воздухораспределителями. В связи с этим (расчет прикладывать не будем, т.к. он объёмен и выходит за рамки темы статьи, всё необходимое у нас есть), параметры приточного и удаляемого воздуха следующие:

1. Приточный:
температура – 20°С;
относительная влажность – 42%.
2. Удаляемый:
температура – 25°С;
относительная влажность – 37%

Построим процесс на I-d диаграмме (рис. 1).
Сначала обозначим точку с параметрами внутреннего воздуха (В), затем проведём через неё луч процесса (обратим внимание, что для данного оформления диаграмм, начальной точкой луча являются параметры t=0°C, d=0 г/кг, а направление указывается рассчитанным значением (6800 кДж/кг) указанным на кромке, далее полученный луч переносится на параметры внутреннего воздуха, сохраняя угол наклона).
Теперь, зная температуры приточного и вытяжного воздуха, мы определяем их точки, находя пересечения изотерм с лучом процесса соответственно. Процесс строим от обратного, для того, чтобы получить заданные параметры приточного воздуха опускаем отрезок – нагрев – по линии постоянного влагосодержания до кривой относительной влажности φ=95% (отрезок П-П1).
Подбираем конденсационный ротор, утилизирующий тепло удаляемого воздуха на нагрев П-П1. Получаем коэффициент полезного действия (считается по температуре) ротора порядка 78% и рассчитываем температуру удаляемого воздуха У1. Теперь, подберём энтальпийный ротор, работающий на охлаждение наружного воздуха (Н) полученными параметрами У1.
Получаем, коэффициент полезного действия (считается по энтальпии) порядка 81%, параметры обработанного воздуха на притоке Н1, и на вытяжке У2. Зная параметры Н1 и П1, можно подобрать воздухоохладитель, мощностью 332 500 Вт.

Рис. 1 – Процесс обработки воздуха для системы 1

Изобразим вентиляционную установку схематично с рекуператорами (рис. 2).

Рис. 2 – Схема вентиляционной установки с рекуператором 1

Теперь, для сравнения, подберём другую систему, на те же параметры, но другой комплектации, а именно: установим один конденсационный ротор.

Теперь (рис. 3) нагрев П-П1 осуществляется электрическим воздухонагревателем, а конденсационный ротор обеспечит следующее: эффективность порядка 83%, температура обработанного приточного воздуха (Н1) – 26°С. Подберём воздухоохладитель на требуемую мощность 478 340 Вт.

Рис. 3 – Процесс обработки воздуха для системы 2

Нужно отметить, что для системы 1 требуется меньше мощности на охлаждение и, в добавок к этому, не требуется дополнительных затрат энергоносителя (в данном случае – переменный ток) для второго подогрева воздуха. Сделаем сравнительную таблицу:


Сравниваемые позиции Система 1 (с двумя утилизаторами) Система 2 (с одним утилизатором) Разница
Потребление электродвигателя ротора 320+320 Вт 320 Вт 320 Вт
Требуемая холодильная мощность 332 500 Вт 478 340 Вт 145 840 Вт
Потребляемая мощность на второй подогрев 0 Вт 151 670 Вт 151 670 Вт
Потребляемая мощность электродвигателей вентиляторов 11+11 кВт 11+11 кВт 0

Резюмируя

Мы наглядно видим различия работы конденсационного и энтальпийного роторов, экономию энергозатрат, связанных с этим. Однако, стоит отметить, что принцип системы 1 может быть организован только для южных, жарких городов, т.к. при рекуперации тепла в холодный период, показатели энтальпийного ротора не сильно отличаются от конденсационного.

Производство вентиляционных установок с роторными рекуператорами

Компания "Аиркат Климатехник" много лет успешно осуществляет разработку, проектирование, производство и инсталляции приточно-вытяжных установок с роторными рекуператорами. Мы предлагаем современные и нестандартные технические решения, которые работают даже при самом сложном алгоритме эксплуатации и экстремальных условиях.

Для того, чтобы получить предложение на систему вентиляции или кондиционирования, просто обратитесь в любой из

ЛЕКЦИЯ

по учебной дисциплине"Тепло-массообменное оборудование предприятий"

(к учебному плану 200__г)

Занятие № 26. Теплообменники – утилизаторы. Конструкции, принцип действия

Разработал: к.т.н., доцент Костылева Е.Е.

Обсуждена на заседании кафедры

протокол № _____

от "_____" ___________2008 г.

Казань - 2008 г.

Занятие № 26 . Теплообменники – утилизаторы. Конструкции, принцип действия

Учебные цели:

1. Изучить конструкции и принцип различных теплообменников утилизаторов

Вид занятия: лекция

Время проведения : 2 часа

Место проведения : ауд. ________

Литература:

1. Электронные ресурсы Internet.

Учебно-материальное обеспечение:

Плакаты, иллюстрирующие учебный материал.

Структура лекции и расчет времени:

Одним из источников вторичных энергоресурсов в здании является тепловая энергия воздуха, удаляемого в атмосферу. Расход тепловой энергии на подогрев поступающего воздуха составляет 40...80% теплопотребления, большая ее часть может быть сэкономлена в случае применения так называемых теплообменников-утилизаторов.

Существуют различные типы теплообменников-утилизаторов.

Рекуперативные пластинчатые теплообменники выполняются в виде пакета пластин, установленных таким образом, что они образуют два смежных канала, по одному из которых движется удаляемый, а по другому - приточный наружный воздух. При изготовлении пластинчатых теплообменников такой конструкции с большой производительностью по воздуху возникают значительные технологические трудности, поэтому разработаны конструкции кожухотрубных теплообменников-утилизаторов ТКТ, представляющих собой пучок труб, расположенных в шахматном порядке и заключенных в кожух. Удаляемый воздух движется в межтрубном пространстве, наружный - внутри трубок. Движение потоков перекрестное.

Рис. 1 Теплообменники- утилизаторы:
а - пластинчатый утилизатор; б - утилизатор ТКТ;в - вращающийся; г - рекуперативный;
1 - корпус; 2 - приточный воздух; 3 - ротор; 4 - сектор продувной; 5 - вытяжной воздух; 6 - привод.

С целью предохранения от обледенения теплообменники снабжены дополнительной линией по ходу наружного воздуха, через которую при температуре стенок трубного пучка ниже критической (-20°С) перепускается часть холодного наружного воздуха.



Установки утилизации тепла вытяжного воздуха с промежуточным теплоносителем могут применяться системах механической приточно-вытяжной вентиляции, а также в системах кондиционирования воздуха. Установка состоит из расположенного в приточном и вытяжном каналах воздухонагревателя, соединенного замкнутым циркуляционным контуром, заполненным промежуточным носителем. Циркуляция теплоносителя осуществляется посредством насосов. Удаляемый воздух, охлаждаясь в воздухонагревателе вытяжного канала, передает тепло промежуточному теплоносителю, нагревающему приточный воздух. При охлаждении вытяжного воздуха ниже температуры точки росы на части теплообменной поверхности воздухонагревателей вытяжного канала происходит конденсация водяного пара, что приводит к возможности образования наледи при отрицательных начальных температурах приточного воздуха.

Установки утилизации тепла с промежуточным теплоносителем могут работать либо в режиме, допускающем образование наледи на теплообменной поверхности вытяжного воздухонагревателя в течение суток при последующем отключении и оттаивании, либо, если отключение установки недопустимо, при применении одного из следующих мероприятий по защите воздухонагревателя вытяжного канала от образования наледи:

  • предварительного нагрева приточного воздуха до положительной температуры;
  • создание байпаса по теплоносителю или приточному воздуху;
  • увеличения расхода теплоносителя в циркуляционном контуре;
  • подогрева промежуточного теплоносителя.

Выбор типа регенеративного теплообменника производят в зависимости от расчетных параметров удаляемого и приточного воздуха и влаговыделений внутри помещения. Регенеративные теплообменники могут устанавливаться в зданиях различного назначения в системах механической приточно-вытяжной вентиляции, воздушного отопления и кондиционирования воздуха. Установка регенеративного теплообменника должна обеспечивать противоточное движение воздушных потоков.

Систему вентиляции и кондиционирования воздуха с регенеративным теплообменником необходимо оснастить средствами контроля и автоматического регулирования, которые должны обеспечивать режимы работы с периодическим оттаиванием инея или предотвращением инееобразования, а также поддерживать требуемые параметры приточного воздуха. Для предупреждения инееобразования по приточному воздуху:

  • устраивают обводной канал;
  • предварительно подогревают приточный воздух;
  • изменяют частоту вращения насадки регенератора.

В системах с положительными начальными температурами приточного воздуха при утилизации тепла нет опасности замерзания конденсата на поверхности теплообменника в вытяжном канале. В системах с отрицательными начальными температурами приточного воздуха необходимо применять схемы утилизации, обеспечивающие защиту от обмерзания поверхности воздухонагревателей в вытяжном канале.

2. РАБОТА ТЕПЛООБМЕННИКА – УТИЛИЗАТОРА В СИСТЕМАХ ВЕНТИЛЯЦИИ И КОНДИЦИОНИРОВАНИЯ ВОЗДУХА

Теплообменники-утилизаторы могутт быть использованы в системах вентиляции и кондиционирования воздуха для утилизации теплоты удаляемого из помещения вытяжного воздуха.

Потоки приточного и вытяжного воздуха подводят через соответствующие входные патрубки в перекрестноточные каналы теплообменного блока, выполненного, например, в виде пакета алюминиевых пластин. При движении потоков по каналам происходит передача теплоты через стенки от более теплого вытяжного воздуха к более холодному, приточному. Затем эти потоки выводят из теплообменника через соответствующие выходные патрубки.

По мере прохождения через теплообменник температура приточного воздуха снижается. При низкой температуре наружного воздуха она может достигнуть температуры точки росы, что ведёт к выпадению капельной влаги (конденсата) на поверхности, ограничивающие каналы теплообменника. При отрицательной температуре этих поверхностей конденсат превращается в иней или лёд, что естественно нарушает работу теплообменника. Для предотвращения образования инея или льда или их удаления в процессе работы данного теплообменника измеряют температуру в самом холодном углу теплообменника или (как вариант) разность давлений в канале вытяжного воздуха до и после теплообменного блока. При достижении предельного, заранее заданного значения измеряемым параметром теплообменный блок поворачивается на 180" вокруг своей центральной оси. Таким образом обеспечивается снижение аэродинамического сопротивления, затрат времени на предотвращение образования инея или его удаление и использование при этом всей теплообменной поверхности.

Задача заключается в снижении аэродинамического сопротивления потоку приточного воздуха, использование для процесса теплообмена всей поверхности теплообменника при проведении процесса предотвращения образования инея или его удаления, а также уменьшение затрат времени на проведение указанного процесса.

Достижению указанного технического результата способствует то, что параметром, по которому судят о возможности образования или наличии инея на поверхности холодной зоны теплообменника, служит либо температура его поверхности в самом холодном углу, либо разность давлений в канале вытяжного воздуха до и после теплообменного блока.

Предотвращение образования инея посредством нагрева поверхности подводимым в каналы с их выходной стороны при помощи поворота теплообменника на угол 180 о потоком вытяжного воздуха (при достижении измеряемым параметром предельного значения) обеспечивает постоянное аэродинамическое сопротивление потоку приточного воздуха, а также использование для теплообмена всей поверхности теплообменника в течение всего времени его работы.

Использование теплообменника-утилизатора дает заметную экономию средств на отопление помещений и снижает потери тепла, неотвратимо существующие при вентиляции и кондиционировании. А за счёт принципиально нового подхода к предупреждению образования конденсата с последующим появлением инея или льда, их полному удалению, значительно повышается эффективность работы данного утилизатора, что выгодно отличает его от других средств утилизации тепла вытяжного воздуха.

3. ТЕПЛООБМЕННИКИ-УТИЛИЗАТОРЫ ИЗ ОРЕБРЕННЫХ ТРУБ