Сварка углеродистых сталей. Сварка низкоуглеродистых и низколегированных сталей Сварка высокоуглеродистых сталей и ее особенности

Глава 5 СВАРКА НИЗКОУГЛЕРОДИСТЫХ КОНСТРУКЦИОННЫХ СТАЛЕЙ

СОСТАВ И СВОЙСТВА СТАЛЕЙ

Сталь - это железный сплав, содержащий до 2 % С. В углеродистых кон-струкционных сталях, широко используемых в машиностроении, су­достроении т.д., содержание углерода обычно оставляет 0,06 ... 0,9 %. Углерод является ос-новным легирующим элементом и определяет меха­нические свойства этой гру-ппы сталей. Повышение его содержания в стали усложняет технологию сварки и затрудняет возможности получе­ния равнопрочного сварного соединения без дефектов.

По степени раскисления сталь изготовляют кипящей, спокойной и полу-спокойной (соответствующие индексы "кп", м сп м и "пс"). Кипящую сталь, соде-ржащую не более 0,07 % Si, получают при неполном раскис­лении металла. Сталь характеризуется резко выраженной неравномерно­стью распределения серы и фосфора по толщине проката. Местная по­вышенная концентрация серы может привести к образованию кристалли­зационных трещин в шве и около-шовной зоне.

Кипящая сталь склонна к старению в околошовной зоне и переходу в хру-пкое состояние при отрицательных температурах. В спокойной ста­ли, содержа-щей не менее 0,12 % Si, распределение серы и фосфора более равномерно. Эти стали менее склонны к старению. Полуспокойная сталь занимает промежуточ-ное положение между кипящей и спокойной сталью.

Стали с содержанием до 0,25 % С относятся к низкоуглеродистым, с со-держанием 0,26 ... 0,45% к среднеуглеродистым, к высокоуглероди­стым отно-сятся, стали, содержащие 0,45 ... 0,75 % С. Они отличаются плохой сваривае-мостью и их не применяют для изготовления сварных конструкций. Темпера-турная область применения углеродистых сталей от -40 до +425 °С, низколе-гированных от -70 до +475 °С. По качествен­ному признаку низкоуглеродистые стали разделяют на две группы: обыкновенного качества и качественные.

Изготовленные из нее конструкции обычно также не подвергают последу-ющей термообработке. Эта сталь поставляется по ГОСТ 380-94 на сталь углеро-дистую обыкновенного качества, ГОСТ 5520-79 (в ред. 1990 г.) на сталь для кот-лостроения, ГОСТ 5521-86 на сталь для судостроения и т.д. (табл. 6.1).

Сталь обычного качества поставляется без термической обработки в гаряче-катаном состоянии и делится на три группы: А, Б, В.

А - поставляется по механическим свойствам, для производства сварных конструкций не применяется, имеет три категории показателей механических их свойств.

Б - поставляется по химическому составу и имеет две категории. В первой нормируется содержание С, Mn, Sі, P, S, N 2 ; во второй - дополнительно норми-руется содержание Cr, Nі и Cu. Стали этой группы имеют ограниченное приме-нение при изготовлении сварных конструкций.

В - поставляется по химическому составу и механическим свойствам. Имеет 6 категорий. Наибольшее применение ВСт. 2, ВСт. 3 всех степеней раскисления:

1 – σ в, δ, α изг; 2 – σ в, δ, σ т, α изг; 3 – дополнительно а н при t = +20 о С;

4 - σ в, δ, σ т, α изг и а н при t = - 20 о С; 5 – 6 – дополнительно после старения

6.1. Химический состав некоторых углеродистых конструкционных сталей, %

Марка стали ГОСТ С Мп Si
Ст1кп Ст1пс Ст1сп Ст2кп Ст2пс Ст2сп СтЗпс СтЗсп 380-94 0,06 ... 0,12 0,06 ... 0,12 0,06 ... 0,12 0,09 ... 0,15 0,09 ...0,15 0,09 ...0,15 0,14 ...0,22 0,14 ... 0,22 0,25 ... 0,50 0,25 ... 0,50 0,25 ... 0,50 0,25 ... 0,50 0,25 ... 0,50 0,25 ... 0,50 0,40... 0,65 0,40 ... 0,65 не более 0,05 0,05 ...0,15 0,15 ...0,30 не более 0,05 0,05 ...0,15 0,15 ...0,30 0,05 ...0,15 0,15 ...0,30
1050-88 0,07 ... 0,14 0,12 ...0,19 0,17 ...0,24 0,35 ... 0,65 0,35 ... 0,65 0,35 ... 0,65 0,17 ... 0,37 0,17 ...0,37 0,17 ... 0,37
15Г 20Г 35Г 4543-71 0,12 ...0,19 0,17 ...0,24 0,32 ... 0,40 0,70 ... 1,00 0,70 ... 1,00 0,70... 1,00 0,17 ... 0,37 0,17 ...0,37 0,17 ...0,37
12К 15К 20К 22К 5520-79 0,08 ...0,16 0,12 ... 0,20 0,16... 0,24 0,19 ...0,26 0,40... 0,70 0,35 ... 0,65 <0,65 1,00 0,17 ...0,37 0,15 ...0,30 0,15 ...0,30 0,17 ...0,40
СтЗС 5521-86 0,14 ... 0,22 0,35 ... 0,60 0,12 ... 0,35

Примечания: 1. Массовая доля хрома, никеля и меди в сталях марок Ст1, Ст2 и СтЗ различной выплавки должна быть не более 0,30 % каждого, серы не более 0,050 %, фосфора не более 0,70 %.

2. Для проката из стали марок СтЗкп, СтЗпс, СтЗсп, предназначенного для сварных конструкций, отклонение по содержанию углерода в сторону его уве­личения не допускается.

Качественная углеродная сталь - содержание Mn = 0,8 - 1,1% (ГОСТ 1050 - 74). Имеет сниженное содержание S. Применяется в основном в гаря-чекатаном виде и в небольшом объеме - после термической обработки, норма-лизации или после закалки с отпуском (для термоупрочненных сталей15Г,20Г).

Конструкционные стали с нормальным и повышенным содержанием марганца (марки 15Г и 20Г) имеют пониженное количество серы. или закал с Механические свойства этих сталей зависят от термообработки (табл.6.2и 6.3).

Примечание. Для сталей марок 10, 15, 20, 15Г и 20Г механические свойства определены на образцах из нормализованных заготовок.

ОСОБЕННОСТИ СВАРКИ НИЗКОУГЛЕРОДИСТЫХ СТАЛЕЙ

Стали обладают хорошей свариваемостью; технология сварки обеспечи-вает равнопрочность сварного соединения с основным металлом и отсутствие дефектов в сварном шве;

Химический состав металла шва незначительно отличается от состава основного металла;

Незначительное снижение углерода, так как в проволоке или стержне углерода меньше чем в стали. Содержание Mn и Sі возрастает. Снижение прочности при снижении углерода компенсируется увеличением V охл и легированием Mn и Sі;

Влияние V охл на механические свойства металла шва. При изменении V охл изменяется количество и строение перлитной фазы. При повышении V охл возрастают σ в, σ т и снижаются δ и а н. V охл определяется толщиной свариваемо-го металла, конструкцией сварного соединения, режимом сварки и начальной температурой изделия. Ее влияние в наибольшей степени проявляется при сварке однослойных швов и последнего слоя многослойных швов. Металл многослойных швов, кроме последнего подвергается действию повторного термического цикла сварки и имеет мелкозернистую структуру;

- при всех способах сварки упрочняется зона перегрева основного металла. При ЭШС- крупнозернистая структура;

Для снятия остаточных напряжений в конструкции из низкоуглеродис-тых сталей выполняется высокий отпуск при 500...680 о С, а для ЭШС – норма-лизация (нагрев при 900...940 о С, охлаждение на воздухе и последующим вы-соким отпуском);

Швы стойкие против образования криталлизационных трещин из - за низкого содержания углерода;

Пластическая деформация в металле шва при сварке под действием сварочных напряжений также повышается σ т.

Низкоуглеродистые и низкоуглеродистые низколегированные стали обла-дают хорошей свариваемостью. Важное требование при сварке рассматривае-мых сталей - обеспечение равнопрочности сварного соединения с основным ме-таллом и отсут­ствие дефектов в сварном шве. Для этого механические свойства металла шва и околошовной зоны должны быть не ниже нижнего предела соот­ветствующих свойств основного металла.

При сварке низкоуглеродистых и низкоуглеродистых низколегиро­ванных сталей при применении соответствующих сварочных материалов металл шва легирован кремнием и марганцем больше, чем основной ме­талл. Поэтому его механические свойства в большинстве случаев выше, чем у основного металла. В этом случае основное требование при сварке -получение сварного шва с не-обходимыми геометрическими размерами и без дефектов.

В некоторых случаях конкретные условия работы конструкций допус­ка-ют снижение отдельных показателей механических свойств сварного со­едине-ния. Однако во всех случаях, особенно при сварке ответственных кон­струкций, швы не должны иметь трещин, непроваров, пор, подрезов.

Геометрические размеры и форма швов должны соответствовать требуе-мым. Сварное соединение должно быть стойким против перехода в хрупкое состояния. Иногда к сварному соединению предъявляют допол­нительные тре-бования (работоспособность при вибрационных и ударных нагрузках, пони-женных температурах и т.д.). Технология должна обеспе­чивать максимальную производительность и экономичность процесса сварки при требуемой надеж-ности конструкции.

Механические свойства металла шва и сварного соединения зависят от его структуры, которая определяется химическим составом, режимом сварки, предыдущей и последующей термообработкой. Химический со­став металла шва при сварке рассматриваемых сталей незначительно от­личается от состава основного металла (табл. 6.6). Это различие сводится к снижению содержания в металле шва углерода для предупреждения образования структур закалочного характера при повышенных скоростях охлаждения. Возможное снижение прочности металла шва, вызванное уменьшением содержания в нем углерода, компенсируется легированием металла через проволоку, покрытие или флюс марганцем, кремнием, а при сварке низколегированных сталей - также и за счет перехода этих элементов из основного металла.

Таким образом, химиче­ский состав металла шва зави­сит от доли участия основного и дополнительного металлов в образовании металла шва и взаимо-действий между метал­лом, шлаком и газовой фазой. Повышенные скорости ох-лаж­дения металла шва также спо­собствуют повышению его прочности (рис. 6.4), однако при этом снижаются его пла­стические свойства и ударная вязкость. Это объясняется из­менением количества и строе­ния перлитной фазы.

Рис. 6.4. Зависимость между скоростью охлаждения и механическими свойствами металла шва придуговой сварке низкоуглеродистых сталей

Критическая температура перехода металла однослойно­го шва в хрупкое состояние практически не зависит от скорости охлаждения. Скорость охлажде-ния металла шва определяется толщиной свариваемого металла, конструкци­ей сварного соединения, режимом сварки и начальной температурой из­делия.

Влияние скорости охлаждения в наибольшей степени проявляется при дуговой сварке однослойных угловых швов и последнего слоя многослой­ных угловых и стыковых швов при наложении их на холодные, предвари­тельно сва-ренные швы. Металл многослойных швов, кроме последних слоев, подвергаю-щийся действию повторного термического цикла свар­ки, имеет более благоп-риятную мелкозернистую структуру. Поэтому он обладает более низкой крити-ческой температурой перехода в хрупкое состояние. Пластическая дефор-ма-ция, возникающая в металле шва под воздействием сварочных напряжений, также повышает предел текучести металла шва.

Обеспечение равнопрочности металла шва при дуговых способах сварки низкоуглеродистьх и низколегированных нетермоупрочненных сталей обычно не вызывает затруднений. Механические свойства металла околошовной зоны зависят от конкретных условий сварки и от вида тер­мообработки стали перед сваркой.

При сварке низкоуглеродисгых горячекатаных (в состоянии постав­ки) сталей при толщине металла до 15 мм на обычных режимах, обеспе­чивающих небольшие скорости охлаждения, структуры металла шва и околошовной зоны примерно такие, как было рассмотрено выше.

Повышение скоростей охлаждения при сварке на форсирован­ных режи-мах металла повышенной толщины, однопроходных угловых швов, при отри-цательных температурах и т.д. может привести к появле­нию в металле шва и околошовной зоны закалочных структур на участ­ках перегрева и полной и не-полной рекристаллизации.

Как видно из данных табл. 6.7 и рис. 6.5 скорость охлаждения для низко-углеродистых сталей оказывает большое влияние на их механиче­ские свойства. При повышении содержания марганца это влияние усили­вается. Поэтому даже при сварке горячекатаной низкоуглеродистой стали марки Ст3кп при указан-ных выше условиях не исключена возможность получения в сварном соедине-нии закалочных структур. Если сталь перед сваркой прошла термическое уп-рочнение - закалку, то в зоне термиче­ского влияния шва на участках рекрис-таллизации и старения будет на­блюдаться отпуск металла, т.е. снижение его прочностных свойств. Уро­вень изменения этих свойств зависит от погонной энергии, типа сварного соединения и условий сварки.

При сварке низколегированных сталей изменение свойств металла шва и околошовной зоны проявляется более значительно. Сварка горячекатаной стали способствует появлению закалочных структур на участках перефева и нормализации (см. рис. 6.2). Уровень изменения механических свойств металла больше, чем при сварке низкоуглеродистых сталей. Термообработка низколегированных сталей, наиболее часто - закалка (термоупрочнение) с целью повышения их прочностных показателей при сохранении высокой пластичности (см. табл. 6.7) усложняет технологию сварки. На участках рек-ристаллизации и старения происходит разупрочне­ние стали под действием высокого отпуска с образованием структур пре­имущественно троостита или сорбита отпуска.

В процессе изготовления конструкций из низкоуглеродистых и низ­ко-легированных сталей на заготовительных операциях и при сварке в зонах, уда-ленных от высокотемпературной области, возникает холодная пластическая деформация. Попадая при наложении последующих швов под сварочный наг-рев до температур около 300 °С, эти зоны становятся участками деформацион-ного старения, приводящего к снижению пласти­ческих и повышению прочнос-тных свойств металла и возможному воз­никновению трещин, особенно при низких температурах или в концен­траторах напряжений.

Высокий отпуск при температурах 600 ... 650°С в этих случаях слу­жит эффективным средством восстановления свойств металла (рис. 6.7).


Рис. 6.7. Свойства стали СтЗкп в зависимости от термообработки и деформационного старения:

1 - исходное горячекатаное состояние; 2 - после 10 %-ной деформации растяжением при 250 °С; 3 - то же и последующего отпуска при 650 °С

Высокий отпуск применяют и для снятия сварочных напряжений. Нор­мализации подвергают сварные конструкции для улучшения структуры отдель-ных участков сварного соединения и выравнивания их свойств. Термообработ-ка, кроме закалки сварных соединений, в которых шов и око­лошовная зона ох-лаждались с повышенными скоростями, приведшими к образованию на неко-торых участках неравновесных структур закалочного характера (угловые одно-слойные швы, последние проходы, выполненные на полностью остывших предыдущих), приводит к снижению прочност­ных и повышению пластических свойств металла в этих участках (табл. 6.7 и 6.9).


Примечание. Состав металла шва: при сварке под флюсом 0,12 % С; 0,75 % Мп; 0,22 % Si; при электрошлаковой сварке 0,14 % С; 0,80 % Мп; 0,07 % Si.

При сварке короткими участками по горячим предварительно нало­жен-ным швам замедленная скорость охлаждения металла шва и около­шовной зоны способствует получению равновесных структур. Влияние термообработки в этом случае сказывается незначительно. При электро­шлаковой сварке, когда скорость остывания металла шва околошовной зоны сопоставима со скорос-тями охлаждения при термообработке, по­следующая термообработка мало из-меняет механические свойства ме­талла рассматриваемых зон. Однако норма-лизация приводит к резкому возрастанию ударной вязкости.

Швы, сваренные на низкоуглеродистых сталях всеми способами сварки, обладают удовлетворительной стойкостью против образования кристаллиза-ционных трещин. Это обусловлено низким содержанием в них углерода. Од-нако для низкоуглеродистых сталей, содержащих угле­род по верхнему пределу (свыше 0,20 %), при сварке угловых швов и первого корневого шва в многос-лойных швах, особенно с повышенным зазором, возможно образование крис-таллизационных трещин, что связа­но в основном с неблагоприятной формой провара (узкая глубокая форма провара с коэффициентом формы 0,8 ... 1,2). Легирующие добавки в низ­колегированных сталях могут повышать вероят-ность образования кри­сталлизационных трещин.

Низкоуглеродистые и низколегированные стали хорошо сваривают­ся практически всеми способами сварки плавлением.

Сварку среднеуглеродистых сталей следует выполнять так, чтобы снизить содержание углерода в металле шва, что достигается применени­ем присадоч-ной проволоки с низким содержанием углерода и уменьше­нием доли основного металла в шве. Следует также обеспечить получе­ние шва с большим коэффи-циентом формы, выбирать режимы сварки и число слоев с учетом получения минимальной зоны термического влия­ния, предупреждения роста зерна в зоне перегрева и по возможности от­сутствия хрупких закалочных структур. Послед-нее может быть обеспече­но предварительным подогревом до 250 ... 300 °С. Многослойная сварка, а также двухдуговая сварка в раздельные сварочные ван-ны (рис. 3.27, б) спо­собствуют получению качественных сварных соединений.

Высокоуглеродистые стали обладают плохой свариваемостью и их прак-тически не применяют для изготовления сварных конструкций. Не­обходимость сварки подобных сталей возникает при ремонтных работах. Она выполняется при предварительном подогреве до температур 450 ... 600 °С покрытыми элек-тродами или полуавтоматами.


Поговорим о газовой сварке углеродистых сталей.

Углеродистая сталь - это сплав железа с углеродом, с содержанием углерода до 2%. По назначению углеродистые стали разделяют на конструкционные (с содержанием углерода в сотых долях процента) и инструментальные (с содержанием углерода в десятых долях процента). На производстве в основном работают с низкоуглеродистыми сталями.

Углеродистые стали делятся на:

  • низкоуглеродистые стали (содержание углерода до 0,25%);
  • среднеуглеродистые стали (содержание углерода от 0,25% до 0,6%);
  • высокоуглеродистые стали (содержание углерода 0,6% - 1,7%).

Низкоуглеродистые стали

Данные стали имеют хорошую свариваемость ацетиленокислородным пламенем без применения флюса. Чем меньше содержание углерода в свариваемом металле, тем лучше будет происходить процесс сварки. В металлах с увеличенным содержанием углерода появляется вероятность образования хрупких структур, а также пористости металла шва. Улучшение структуры достигается путем проковки металла шва при температуре красного каления и медленным охлаждением. Когда сварное соединение должно работать на растяжение, изгиб и удар, это способ является особенно существенным. Для того, что бы устранить пористость металла шва нужно использовать присадочный металл с пониженным содержанием углерода (по отношению к основному металлу). В основном газовую сварку применяют для сварки тонколистового металла толщиной до 5 мм. Для больших толщин металла, сварку наиболее правильно проводить способами дуговой сварки плавлением. Так же и сваркой плавящимся электродом в среде углекислого газа. Пропан-бутан, природный газ и другие (газы-заменители ацетилена), возможны их использование для сварки металла из низкоуглеродистой стали, которые не подлежат сдаче Госгортехнадзору, так как зона термического влияния увеличивается примерно на 30%, в сравнении со сваркой ацетиленокислородным пламенем, так же снижаются механические свойства сварного соединения.

Среднеуглеродистые стали

У данных сталей присутствует свойство закаливаться после нагрева и быстрого охлаждения. Например, стали с содержанием углерода более 0,4% выгоднее сваривать дуговой сваркой плавлением, так же нельзя исключать возможность сварки ацетиленокислородным пламенем. Чтобы получить добротное сварное соединение сварочный процесс следует делать с максимальной скоростью, с предварительной и последующей термообработкой. Для газовой сварки сталей данного класса, следует применять присадочную проволоку с раскислителями (марганцем и кремнием), это делается для того, чтобы избежать выгорания углерода и образования пористости шва.

Высокоуглеродистые стали

Данные стали плохо свариваются газовой сваркой из-за сильного выгорания углерода и образования закалочных структур. Металла шва обычно содержит газовые раковины и включения. Сваривание изделия дуговой сваркой обеспечит значительно лучшие результаты.

Свариваемость углеродистых сталей газовым пламенем

Тип стали Содержание углерода в сплаве, % Назначение и область применения Оценка свариваемости
Низкоуглеродистые стали 0,06-0,15 Котельная сталь, резервуары, цельнотянутые трубы Хорошая свариваемость, шов не закаливается
Низкоуглеродистые стали 0,15-0,25 Литая сталь, трубы, котлы, приводные валы, бочки и т.д. Хорошая свариваемость, шов слегка закаливается, но не обрабатывается режущим инструментом
Среднеуглеродистые стали 0,25-0,45 Оси, шатуны, шестерни и другие детали машины Удовлетворительная свариваемость. Качественное сварное соединение при предварительном нагреве и последующей термообработке
Среднеуглеродистые стали 0,45-0,6 Инструмент, молоты, шестерни и т.д. Удовлетворительная свариваемость при использовании специального флюса и термообработки
Высокоуглеродистые стали 0,6-1,7 Пуансоны, штампы, рельсы, крестовины и т.д. Плохая свариваемость. Рекомендуется пайка или наплавка

Основные параметры и режимы газовой сварки низкоуглеродистых и среднеуглеродистых сталей

Горючий газ Присадочный металл Флюс Удельная мощность пламени, л/ч на 1 мм Параметры режима сварка Термообработка Примечание
Ацетилен Св-08; Св-08А; Св-12ГС; Св-08ГС Св-08Г2С Не требуется 100-130 (при левом способе сварки) 130-150 (при правом способе сварки) Нормальное (β=1,0÷1,1) Не требуется Сводка в любых пространственных положениях
Пропан-бутан Св-12ГС; Св-08ГА; Св-08Г2С То же 60-75 (при левом способе сварки) Нормальное или слегка окислительное (β=3,5÷3,8) То же
Городской газ Св-12ГС Не требуется 180-220 (при левом способе сварки) Нормальное или слегка окислительное (β=1,5÷1,7) Не требуется Только для деталей, не подлежащих сдаче Госгортехнадзору
Ацетилен Св-08ГА; Св-10ГА; Св-08ГС Прокаленная бура (для сталей с содержанием углерода 0,5-0,6%) 75-90 (при левом способе сварки) слегка науглероживающее (β=1,5÷1,7) При сварке металла толщиной менее 3 мм общий предварительный нагрев изделия до 300-400 °С либо местный нагрев до 650-700 °С. После сварки высокотемпературный отпуск при 600-650 °С с последующим охлаждением на воздухе Сварка только при положительных температурах
>> >>Сварка низкоуглеродистых и среднеуглеродистых сталей

Сварка низкоуглеродистых и среднеуглеродистых конструкционных сталей

При сварке низкоуглеродистых и среднеуглеродистых конструкционных сталей необходимо учитывать, к какой относится та или иная марка стали. Среднеуглеродистые конструкционные стали содержат большее количество углерода, чем низкоуглеродистые. А углерод сильно влияет на .

Сварка низкоуглеродистых конструкционных сталей

В химическом составе низкоуглеродистых сталей содержится до 0,25% углерода, свариваемость у таких сталей хорошая. Они относятся к первой группе свариваемости и свариваются без ограничений всеми .

Электроды для сварки низкоуглеродистых сталей

Газовая сварка низкоуглеродистых и среднеуглеродистых сталей

При металлоконструкций, состоящих из тонколистовой углеродистой стали, используется нормальное . В средней, восстановительной зоне пламени происходит восстановление железа из его оксидов. Благодаря этому, в качестве низкоуглеродистых сталей применяют проволоку марок Св-08 или Св-08А. Но, для того, чтобы процесс раскисления металла происходил ещё эффективнее, рекомендуют использовать проволоку марок Св-08ГА или Св-08ГС.

Чтобы уменьшить риск образования кристаллизационных трещин при газовой сварке среднеуглеродистых сталей, сварочные материалы необходимо выбирать с пониженным содержанием углерода, не более 0,3% (по возможности, не более 0,2%).

Толщиной до 3мм, применяют левый . Средний расход ацетилена составляет, при этом, 120-150л/ч из расчёта на миллиметр толщины свариваемого металла.

Для сваривании металла большей толщины, применяют правый способ сварки. Этот обеспечивает более высокую производительность при сваривании больших толщин, по сравнению с левым способом. В этом случае расход ацетилена составляет 120-150л/ч из расчёта на 1мм толщины основного металла. Чтобы избежать перегрева металла в зоне сварки, расход ацетилена при газовой сварке среднеуглеродистых сталей рекомендуется уменьшать.

К углеродистым конструкционным сталям относятся стали, содержащие 0,1 - 0,7 % углерода, который является основным легирующим элементом в сталях этой группы и определяет их механические свойства. Повышение содержания углерода усложняет технологию сварки и получение качественных сварных соединений. В сварочном производстве в зависимости от содержания углерода углеродистые конструкционные стали условно разделяют на три группы: низко-, средне- и высокоуглеродистые. Технология сварки сталей этих групп различна.

Большинство сварных конструкций в настоящее время изготовляют из низкоуглеродистых сталей, содержащих углерода до 0,25%.

Низкоуглеродистые стали относятся к хорошо сваривающимся металлам практически всеми видами и способами сварки плавлением.

Технологию сварки для этих сталей выбирают из условий соблюдения комплекса требований, обеспечивающих прежде всего равнопрочность сварного соединения с основным металлом и отсутствие дефектов в сварном соединении. Сварное соединение должно быть стойким против перехода в хрупкое состояние, а деформация конструкции должна быть в пределах, не отражающихся на ее работоспособности. Металл шва при сварке низкоуглеродистой стали незначительно отличается по своему составу от основного металла - снижается содержание углерода и повышается содержание марганца и кремния. Однако обеспечение равнопрочности при дуговой сварке не вызывает затруднений. Это достигается за счет увеличения скорости охлаждения и легирования марганцем и кремнием через сварочные материалы. Влияние скорости охлаждения в значительной степени проявляется при сварке однослойных швов, а также в последних слоях многослойного шва. Механические свойства металла околошовной зоны подвергаются некоторым изменениям по сравнению со свойствами основного металла - при всех видах дуговой сварки это незначительное упрочнение металла в зоне перегрева. При сварке стареющих (например, кипящих и полуспокойных) низкоуглеродистых сталей на участке рекристаллизации околошовной зоны возможно снижение ударной вязкости металла. Металл околошовной зоны охрупчи-вается более интенсивно при многослойной сварке по сравнению с однослойной. Сварные конструкции из низкоуглеродистой стали иногда подвергают термической обработке. Однако у конструкций с угловыми однослойными швами и многослойными, наложенными с перерывом, все виды термической обработки, кроме закалки, приводят к снижению прочности и повышению пластичности металла шва. Швы, выполненные всеми видами и способами сварки плавлением, имеют вполне удовлетворительную стойкость против образования кристаллизационных трещин из-за низкого содержания углерода. Однако при сварке стали с верхним пределом содержания углерода могут появиться кристаллизационные трещины, прежде всего в угловых швах, первом слое многослойных стыковых швов, односторонних швах с полным проваром кромок и первом слое стыкового шва, сваренного с обязательным зазором.

Большое распространение при изготовлении конструкций из низкоуглеродистых сталей получила ручная сварка покрытыми электродами. В зависимости от требований к сварной конструкции и прочностных показателей свариваемой стали выбирают тип электрода. В последние годы широкое применение получили электроды типа Э46Т с рутиловым покрытием. Для особо ответственных конструкций используют электроды с фтористо-кальциевым и фтористо-кальциеворутиловым покрытием типа Э42А, обеспечивающие повышенную стойкость металла шва против кристаллизационных трещин и более высокие пластические свойства. Применяются также высокопроизводительные электроды с железным порошком в покрытии и электроды для сварки с глубоким проплавлением. Род и полярность тока выбирают в зависимости от особенностей электродного покрытия.

Несмотря на хорошую свариваемость низкоуглеродистых сталей иногда для предотвращения_ образования закалочных структур в околошовной зоне‘следует предусматривать специальные технологические меры. Поэтому при сварке первого слоя многослойного шва и угловых швов на толстом металле рекомендуется предварительный подогрев его до 120- 150 °С, чем обеспечивается стойкость металла против появления кристаллизационных трещин. Для уменьшения скорости охлаждения перед исправлением дефектных участков необходимо выполнять местный подогрев до 150° С, что будет препятствовать понижению пластических свойств наплавленного металла.

Низкоуглеродистые стали газовой сваркой сваривают без особых затруднений нормальным пламенем и, как правило, без флюса. Мощность пламени при левом способе выбирают из расчета расхода 100- 130 дм3/ч ацетилена на 1 мм толщины металла, а при правом - 120-150 дм3/ч. Высококвалифицированные сварщики работают с пламенем большой мощности - 150-200 дм 3/ч ацетилена, используя при этом присадочную проволоку большего, чем при обычной сварке диаметра. Для получения равнопрочного с основным металлом соединения при сварке ответственных конструкций следует применять кремнемарганцовистую сварочную проволоку. Конец проволоки должен быть погружен в ванну расплавленного металла. В процессе сварки нельзя отклонять сварочное пламя от ванны расплавленного металла, так как это может привести к окислению металла шва кислородом. Для уплотнения и повышения пластичности наплавленного металла осуществляют проковку и последующую термообработку.

Отличие среднеуглеродистых сталей от низкоуглеродистых в основном состоит в различном содержании углерода. Среднеуглеродистые стали содержат 0,26 - 0,45% углерода. Повышенное содержание углерода создает дополнительные трудности при сварке конструкций из этих сталей. К ним относится низкая стойкость против кристаллизационных трещин, возможность образования малопластичных закалочных структур и трещин в околошовной зоне и трудность обеспечения рав-нопрочности металла шва с основным металлом. Повышение стойкости металла шва против кристаллизационных трещин достигается снижением количества углерода в металле шва путем применения электродных стержней и присадочной проволоки с пониженным содержанием углерода, а также уменьшения доли основного металла в металле шва, что достигается сваркой с разделкой кромок на режимах, обеспечивающих минимальное проплавление основного металла и максимальное значение коэффициента формы шва. Этому же способствуют электроды с большим коэффициентом наплавки. Для преодоления трудностей, возникающих при сварке изделий из среднеуглеродистых сталей, выполняют предварительный и сопутствующий подогрев, модифицирование металла шва и двухдуговую сварку в раздельные ванны. Ручную сварку среднеуглеродистых сталей ведут электродами с фтористо-кальциевым покрытием марок УОНИ-13/55 и УОНИ-13/45, которые обеспечивают достаточную прочность и высокую стойкость металла шва против образования кристаллизационных трещин. Если к сварному соединению предъявляются требования высокой пластичности, необходимо подвергнуть его последующей термообработке. При сварке следует избегать наложения широких валиков, сварку выполняют короткой дугой, небольшими валиками. Поперечные движения электрода нужно заменять продольными, кратеры заваривать или выводить на технологические пластины, так как в них могут образовываться трещины.

Газовую сварку среднеуглеродистых сталей ведут нормальным или слегка науглероживающим пламенем мощностью 75- 100 дм3/ч ацетилена на 1 мм толщины металла только левым способом, уменьшающим перегрев металла. Для изделий толщиной свыше 3 мм рекомендуется общий подогрев до 250 - 350 °С или мест-ный -до 600-650 °С. Для сталей с содержанием углерода на верхнем пределе целесообразно применять специальные флюсы. Для улучшения свойств металла используют проковку и термическую обработку.

К высокоуглеродистым сталям относят стали с содержанием углерода в пределах 0,46 - 0,75%. Эти стали, как правило, не пригодны для изготовления сварных конструкций. Однако необходимость сварки возникает при ремонтных работах. Сварка производится с предварительным, а иногда с сопутствующим подогревом и последующей термообработкой. При температуре ниже 5 °С и на сквозняках сварку выполнять нельзя. Остальные технологические приемы такие же, как и для сварки среднеуглеродистых сталей. Газовую сварку высокоуглеродистых сталей осуществляют нормальным или слегка науглероживающим пламенем мощностью 75 - 90 дм3/ч ацетилена на 1 мм толщины металла с подогревом до 250-300 °С. Применяют левый способ сварки, позволяющий уменьшить время перегрева и время пребывания металла сварочной ванны в расплавленном состоянии. Используются флюсы того же состава, что и для среднеуглеродистых сталей. После сварки шов проковывается с последующей нормализацией или отпуском.

В последние годы находят применение термоупроч-ненные углеродистые стали. Стали повышенной прочности позволяют уменьшить толщину изделий. Режимы и техника сварки термоупрочненных сталей такие же, как и для обычной углеродистой стали того же состава. Сварочные материалы выбирают с учетом обеспечения равнопрочности металла шва с основным металлом. Главным затруднением при сварке является разупрочнение участка околошовной зоны, подвергающегося нагреву до 400 - 700 °С. Поэтому для термоупрочненной стали рекомендуются маломощные режимы сварки, а также способы сварки с минимальным теплоотводом в основной металл.

Применяют также стали с защитными покрытиями. Наибольшее распространение получила оцинкованная сталь при изготовлении различных конструкций и сани-тарно-технических трубопроводов. При сварке оцинкованной стали в случае попадания цинка в’ сварочную ванну создаются условия для появления пор и трещин Поэтому цинковое покрытие необходимо удалять со свариваемых кромок. Учитывая, что следы цинка на кромках остаются, следует принимать дополнительные меры по предупреждению образования дефектов: по сравнению со сваркой обычной стали зазор увеличивают в 1,5 раза, а скорость сварки уменьшают на 10 - 20%, электрод вдоль шва перемещают с продольными колебаниями. При ручной сварке оцинкованной стали лучшие результаты получают при работе электродами с рути-ловым покрытием, обеспечивающими минимальное содержание кремния в металле шва. Но можно применять и другие электроды. В связи с тем, что пары цинка чрезвычайно токсичны, сварку оцинкованной стали можно производить при наличии сильной местной вентиляции. После окончания сварочных работ необходимо нанести защитный слой на поверхность шва и восстановить его на участке околошовной зоны.

В зависимости от химического состава сталь бывает углеродистая и легированная. Углеродистая сталь делится на низкоуглеродистую (содержайие углерода до 0,25%), среднеуглеродистую (содержание углерода от 0,25 до 0,6%) и высокоуглеродистую (содержание углерода от 0,6 до 2,0%). Сталь, в составе которой Кроме углерода имеются легирующие компоненты (хром, никель, вольфрам, ванадий и т.д.), называется легированной. Легированные стали бывают: низколегированные (суммарное содержание легирующих компонентов, кроме углерода, менее 2,5%); среднелегированные (суммарное содержание легирующих компонентов, кроме углерода, от 2,5 до 10%), высоколегированные (суммарное содержание легирующих компонентов, кроме углерода, более 10%).
По микроструктуре различают стали перлитного, мартенситного, аустенитного, ферритного и карбидного классов.
По способу производства сталь может быть:
а) обыкновенного качества (содержание углерода до 0,6%), кипящая, полуспокойная и спокойная. Кипящую сталь получают при неполном раскислении металла кремнием, она содержит до 0,05% кремния. Спокойная сталь имеет однородное плотное строение и содержит не менее 0,12% кремния. Полуспокойная сталь занимает промежуточное положение между кипящей и спокойной сталями и содержит 0,05 - 0,12% кремния; б) качественной - углеродистой или легированной, в которых содержание серы и фосфора не должно превышать по 0,04% каждого элемента;
в) высококачественной - углеродистой или легированной, в которых содержание серы и фосфора не должно превышать соответственно 0,030 и 0,035% - Такая сталь также имеет повышенную чистоту по неметаллическим включениям и обозначается буквой А, помещаемой после обозначения марки.
По назначению стали бывают строительные, машиностроительные (конструкционные), инструментальные и стали с особыми физическими свойствами.
Сварка низкоуглеродистых сталей. Такие стали имеют хорошую свариваемость. При выборе типа и марки электрода для сварки низкоуглеродистых сталей руководствуются следующими требованиями:
обеспечение равнопрочности сварного соединения с основным металлом;
получение сварных швов без дефектов;
обеспечение требуемого химического состава металла шва;
получение стойкости сварных соединений в условиях вибрационных и ударных нагрузок, а также при повышенных или пониженных температурах.
Для сварки низкоуглеродистых сталей применяют электроды марок ОММ-5, СМ-5, ЦМ-7, КПЭ-32Р, ОМА-2, УОНИ-13/45, СМ-11 и др. (табл. 10).

Таблица 10

Технологические характеристики электродов для сварки низкоуглеродистых сталей


Сварка среднеуглеродистых сталей. Такие стали имеют повышенное содержание углерода, который является причиной образования кристаллизационных трещин при сварке, а также малопластичных закалочных структур и трещин в околошовной зоне. Поэтому для повышения стойкости металла шва против образования кристаллизационных трещин следует понизить количество углерода в металле шва. Это достигается применением электродов с пониженным содержанием углерода, а также уменьшением доли участия основного металла в металле шва.
Чтобы снизить вероятность появления закалочных структур, необходимо применять предварительный и сопутствующий подогрев изделия. Надежным способом достижения равнопрочности сварного соединения при низком процентном содержании углерода является дополнительное легирование металла шва марганцем и кремнием.
Среднеуглеродистые стали свариваются электродами УОНИ-13/45, УП-1/45, УП-2/45, ОЗС-2, УОНИ-13/55, К-5А, УОНИ-13/65 и др. (табл. 11).