Схема работы гидроэлектростанции. Принцип работы гидроэлектростанции. Схема, описание. Список использованных источников

Многообразие вариантов и уникальность технических решений применяемых при строительстве гидроэлектростанций поражает воображение. На самом деле, не так легко найти две одинаковые станции. Но всё же существует их классификация, основанная на определённых признаках - критериях.

Способ создания напора

Пожалуй, самый очевидный критерий - способ создания напора :

  • русловая гидроэлектростанция (ГЭС);
  • деривационная гидроэлектростанция;
  • гидроаккумулирующая электростанция (ГАЭС);
  • приливная электростанция (ПЭС).

Между этими четырьмя основными видами гидроэлектростанций есть характерные отличия. Речная гидроэлектростанция располагается на реке, перекрывая плотиной её течение для создания напора и водохранилища. Деривационная ГЭС обычно располагается на извилистых горных реках, где можно соединить рукава реки водоводом чтобы пустить часть потока по более короткому пути. Напор при этом создаётся естественным перепадом рельефа местности, а водохранилище может и вовсе отсутствовать. Гидроаккумулирующая электростанция представляет собой два бассейна, располагающихся на разных уровнях. Бассейны соединены водоводами, по которым вода может перетекать в нижний бассейна из верхнего и перекачиваться обратно. Приливная электростанция располагается в заливе, перекрытом плотиной для создания водохранилища. В отличии от гидроаккумулирующей электростанции рабочий цикл ПЭС зависит от явления приливов/отливов.

Величина напора

По величине напора, создаваемого гидротехническим сооружением (ГТС) гидроэлектростанции делятся на 4 группы:

  • низконапорные - до 20 м;
  • средненапорные - от 20 до 70 м;
  • высоконапорные - от 70 до 200 м;
  • сверхвысоконапорные - от 200 м.

Стоить отметить что классификация по величине напора носит относительный характер и разнится от одного источника к другому.

Установленная мощность

По установленной мощности станции - сумме номинальных мощностей генерирующего оборудования установленного на ней. Эта классификация имеет 3 группы:

  • микро-ГЭС - от 5 кВт до 1 МВт;
  • малые ГЭС - от 1 кВт до 10 МВт;
  • крупные ГЭС - свыше 10 МВт.

Классификация по установленной мощности также как и по величине напора, не является строгой. Одну и ту же станцию в разных источниках могут относить к разным группам.

Конструкция плотины

Существует 4 основных группы плотин гидроэлектростанций:

  • гравитационная;
  • контрфорсная;
  • арочная;
  • арочно-гравитационная.

Гравитационная плотина представляет собой массивную конструкцию удерживающую воду в водохранилище за счёт своего веса. Контрфорсная плотина использует несколько другой механизм – свой относительно небольшой вес она компенсирует весом воды, давящей на наклонную грань плотины со стороны верхнего бьефа. Арочная плотина , пожалуй самая изящная, имеет форму арки, упирающейся основанием в берега и округлой частью выпуклой в сторону водохранилища. Удержание воды у арочной плотины происходит за счёт перераспределения давления с фронта плотины на берега реки.

Расположение машинного зала

Точнее, по расположению машинного зала относительно плотины , не путать с компоновкой! Эта классификация имеет значение только для русловых, деривационных и приливных электростанций.

  • руслового типа;
  • приплотинного типа.

При русловом типе машинный зал располагается непосредственно в теле плотины, приплотинной типе - возводится отдельно от тела плотины и обычно располагается сразу за ним.

Компоновка

Под словом "компоновка" в данном контексте подразумевается расположение машинного зала относительно русла реки. Будьте внимательны при чтении другой литературы на эту тему, потому как слово компоновка имеет более широкое значение. Классификация справедлива только для русловых и деривационных электростанций.

  • русловая;
  • пойменная;
  • береговая.

При русловой компоновке здание машинного зала располагается в русле реки, пойменной компоновке - в пойме реки, а при береговой компоновке - на берегу реки.

Зарегулированность

А именно степень зарегулированности стока реки. Классификация имеет значение только для русловых и деривационных гидроэлектростанций.

  • суточного регулирования (цикл работы - одни сутки);
  • недельного регулирования (цикл работы - одна неделя);
  • годичного регулирования (цикл работы - один год);
  • многолетнего регулирования (цикл работы - несколько лет).

Классификация отражает насколько велико водохранилище гидроэлектростанции по отношению к объему годового стока реки.

Все приведённые критерии не являются взаимно исключаемыми, то есть одна и та же ГЭС может быть речного типа, высоконапорной, средней мощности, русловой компоновки с машинным залом приплотинного типа, арочной плотиной и водохранилищем годичного регулирования.

Список использованных источников

  1. Брызгалов, В.И. Гидроэлектростанции: учеб. пособие / В.И. Брызгалов, Л.А. Гордон - Красноярск: ИПЦ КГТУ, 2002. - 541 с.
  2. Гидротехнические сооружения: в 2 т. / М.М. Гришин [и др.]. - Москва: Высшая школа, 1979. - Т.2 - 336 с.
Опубликовано: 21 июля 2016 Просмотров: 4.5k

Гидроэлектростанция

Гидроэлектроста́нция (ГЭС) - электростанция , в качестве источника энергии использующая энергию водного потока . Гидроэлектростанции обычно строят на реках , сооружая плотины и водохранилища .

Для эффективного производства электроэнергии на ГЭС необходимы два основных фактора: гарантированная обеспеченность водой круглый год и возможно большие уклоны реки, благоприятствуют гидростроительству каньонобразные виды рельефа.

Особенности

Принцип работы

Принцип работы ГЭС достаточно прост. Цепь гидротехнических сооружений обеспечивает необходимый напор воды, поступающей на лопасти гидротурбины, которая приводит в действие генераторы, вырабатывающие электроэнергию.

Крупнейшие ГЭС в мире

Наименование Мощность,
ГВт
Среднегодовая
выработка, млрд кВт·ч
Собственник География
Три ущелья 22,40 100,00 р. Янцзы , г. Сандоупин, Китай
Итайпу 14,00 100,00 Итайпу-Бинасионал р. Парана , г. Фос-ду-Игуасу , Бразилия /Парагвай
Гури 10,30 40,00 р. Карони , Венесуэла
Черчилл-Фолс 5,43 35,00 Newfoundland and Labrador Hydro р. Черчилл, Канада
Тукуруи 8,30 21,00 Eletrobrás р. Токантинс , Бразилия

Гидроэлектростанции России

По состоянию на 2009 год в России имеется 15 гидроэлектростанций свыше 1000 МВт (действующих, достраиваемых или находящихся в замороженном строительстве), и более сотни гидроэлектростанций меньшей мощности.

Крупнейшие гидроэлектростанции России

Наименование Мощность,
ГВт
Среднегодовая
выработка, млрд кВт·ч
Собственник География
Саяно-Шушенская ГЭС 2,56 (6,40) 23,50 ОАО РусГидро р. Енисей , г. Саяногорск
Красноярская ГЭС 6,00 20,40 ОАО «Красноярская ГЭС» р. Енисей , г. Дивногорск
Братская ГЭС 4,52 22,60 ОАО Иркутскэнерго , РФФИ р. Ангара , г. Братск
Усть-Илимская ГЭС 3,84 21,70 ОАО Иркутскэнерго , РФФИ р. Ангара , г. Усть-Илимск
Богучанская ГЭС 3,00 17,60 ОАО «Богучанская ГЭС», ОАО РусГидро р. Ангара , г. Кодинск
Волжская ГЭС 2,58 12,30 ОАО РусГидро р. Волга , г. Волжский
Жигулёвская ГЭС 2,32 10,50 ОАО РусГидро р. Волга , г. Жигулевск
Бурейская ГЭС 2,01 7,10 ОАО РусГидро р. Бурея , пос. Талакан
Чебоксарская ГЭС 1,40 (0,8) 3,31 (2,2) ОАО РусГидро р. Волга , г. Новочебоксарск
Саратовская ГЭС 1,36 5,7 ОАО РусГидро р. Волга , г. Балаково
Зейская ГЭС 1,33 4,91 ОАО РусГидро р. Зея , г. Зея
Нижнекамская ГЭС 1,25 (0,45) 2,67 (1,8) ОАО «Генерирующая компания», ОАО «Татэнерго » р. Кама , г. Набережные Челны
Загорская ГАЭС 1,20 1,95 ОАО РусГидро р. Кунья , пос. Богородское
Воткинская ГЭС 1,02 2,60 ОАО РусГидро р. Кама , г. Чайковский
Чиркейская ГЭС 1,00 2,47 ОАО РусГидро р. Сулак , п. Дубки

Примечания:

Другие гидроэлектростанции России

Предыстория развития гидростроения в России

В Советский период развития энергетики упор делался на особую роль единого народнохозяйственного плана электрификации страны - ГОЭЛРО , который был утвержден 22 декабря 1920 года. Этот день был объявлен в СССР профессиональным праздником - Днём энергетика . Глава плана, посвященная гидроэнергетике - называлась «Электрификация и водная энергия». В ней указывалось, что гидроэлектростанции могут быть экономически выгодными, главным образом, в случае комплексного использования: для выработки электроэнергии, улучшения условий судоходства или мелиорации . Предполагалось, что в течение 10-15 лет в стране можно соорудить ГЭС общей мощностью 21 254 тыс. лошадиных сил (около 15 млн кВт), в том числе в европейской части России - мощностью 7394, в Туркестане - 3020, в Сибири - 10 840 тыс. л.с. На ближайшие 10 лет намечалось сооружение ГЭС мощностью 950 тыс. кВт, однако в последующем было запланировано сооружение десяти ГЭС общей рабочей мощностью первых очередей 535 тыс. кВт.

Хотя уже за год до этого в 1919 году Совет труда и обороны признал строительства Волховской и Свирской гидростанций объектами, имеющими оборонное значение. В том же году началась подготовка к возведению Волховской ГЭС, первой из гидроэлектростанций возведенных по плану ГОЭЛРО.

Однако и до начала строительства Волховской ГЭС Россия имела достаточно богатый опыт промышленного гидростроительства, в основном, частными компаниями и концессиями . Информация об этих ГЭС, построенных в России за последнее десятилетие 19-го века и первые 20 лет двадцатого столетия достаточно разрознена, противоречива и требует специальных исторических исследований.

Наиболее достоверным считается, что первой гидроэлектростанцией в России была Березовская (Зыряновская) ГЭС, построенная в Рудном Алтае на реке Березовка (приток р. Бухтармы) в 1892 году. Она была четырехтурбинная общей мощностью 200 кВт и предназначалась для обеспечения электричеством шахтного водоотлива из Зыряновского рудника.

На роль первой также претендует Ныгринская ГЭС, которая появилась в Иркутской губернии на реке Ныгри (приток р. Вачи) в 1896 году. Энергетическое оборудование станции состояло из двух турбин с общим горизонтальным валом, вращавшим три динамо-машины мощностью по 100 кВт. Первичное напряжение преобразовывалось четырьмя трансформаторами трехфазного тока до 10 кВ и передавалось по двум высоковольтным линиям на соседние прииски. Это были первые в России высоковольтные ЛЭП. Одну линию (длиной 9 км) проложили через гольцы к прииску Негаданному, другую (14 км) - вверх по долине Ныгри до устья ключа Сухой Лог, где в те годы действовал прииск Ивановский. На приисках напряжение трансформировалось до 220 В. Благодаря электроэнергии Ныгринской ГЭС в шахтах установили электрические подъемники. Кроме того, электрифицировали приисковую железную дорогу, служившую для вывоза отработанной породы, которая стала первой в России электрифицированной железной дорогой.

Преимущества

  • использование возобновляемой энергии.
  • очень дешевая электроэнергия.
  • работа не сопровождается вредными выбросами в атмосферу.
  • быстрый (относительно ТЭЦ/ТЭС) выход на режим выдачи рабочей мощности после включения станции.

Недостатки

  • затопление пахотных земель
  • строительство ведется только там, где есть большие запасы энергии воды
  • на горных реках опасны из-за высокой сейсмичности районов
  • сокращенные и нерегулируемые попуски воды из водохранилищ по 10-15 дней (вплоть до их отсутствия), приводят к перестройке уникальных пойменных экосистем по всему руслу рек, как следствие, загрязнение рек, сокращение трофических цепей, снижение численности рыб, элиминация беспозвоночных водных животных, повышение агрессивности компонентов гнуса (мошки) из-за недоедания на личиночных стадиях, исчезновение мест гнездования многих видов перелетных птиц, недостаточное увлажнение пойменной почвы, негативные растительные сукцессии (обеднение фитомассы), сокращение потока биогенных веществ в океаны.

Крупнейшие аварии и происшествия

Примечания

См. также

Ссылки

  • Карта крупнейших ГЭС России (GIF, данные 2003 года)

Практически каждый представляет себе предназначение гидроэлектростанций, однако лишь немногие достоверно понимают принцип работы ГЭС. Основная загадка для людей - каким образом вся эта огромная плотина без какого-либо топлива генерирует электрическую энергию. Об этом и поговорим.

Что такое ГЭС?

Гидроэлектростанция - это сложный комплекс, состоящий из разных сооружений и специального оборудования. Возводятся гидроэлектростанции на реках, где есть постоянный приток воды для наполнения плотины и водохранилища. Подобные сооружения (плотины), создаваемые при постройке гидроэлектростанции, необходимы для концентрации постоянного потока воды, который при помощи специального оборудования для ГЭС преобразовывается в электрическую энергию.

Отметим, что важную роль в плане эффективности работы ГЭС играет выбор места для строительства. Необходимо наличие двух условий: гарантированная неиссякаемая обеспеченность водой и высокий угол

Принцип работы ГЭС

Работа гидроэлектростанции достаточно проста. Возведенные гидротехнические сооружения обеспечивают стабильный напор воды, который поступает на лопасти турбины. Напор приводит турбину в движение, в результате чего она вращает генераторы. Последние и вырабатывают электроэнергию, которую затем по линиям высоковольтных передач доставляют потребителю.

Основная сложность подобного сооружения - обеспечение постоянного напора воды, что достигается путем возведения плотины. Благодаря ей большой объем воды концентрируется в одном месте. В некоторых случаях используют естественный ток воды, а иногда плотину и деривацию (естественное течение) применяют совместно.

В самом здании находится оборудование для ГЭС, основная задача которого заключается в преобразование механической энергии движения воды в электрическую. Эта задача возложена на генератор. Также используется и дополнительное оборудование для контроля работы станции, распределяющие устройства и трансформаторные станции.

Ниже на картинке показана принципиальная схема ГЭС.

Как видите, поток воды вращает турбину генератора, тот вырабатывает энергию, подает ее на трансформатор для преобразования, после чего она транспортируется по ЛЭП к поставщику.

Мощности

Есть разные гидроэлектростанции, которые можно поделить по вырабатываемой мощности:

  1. Очень мощные - с выработкой более 25 МВт.
  2. Средние - с выработкой до 25 МВт.
  3. Малые - с выработкой до 5 МВт.

Технологии

Как мы уже знаем, принцип работы ГЭС основан на использовании механический энергии падающей воды, которая в дальнейшем с помощью турбины и генератора преобразуется в электрическую. Сами турбины могут быть установлены либо в дамбе, либо возле нее. В некоторых случаях применяют трубопровод, через который вода, находящаяся ниже уровня дамбы, проходит под высоким давлением.

Индикаторов мощности любой ГЭС несколько: расход воды и гидростатический напор. Последний показатель определяется разницей высот между начальной и конечной точкой свободного падения воды. При создании проекта станции на одном из этих показателей основывают всю конструкцию.

Известные сегодня технологии производства электричества позволяют получать высокий КПД при преобразовании механической энергии в электрическую. Иногда он в несколько раз превышает аналогичные показатели тепловых электростанций. Столь высокая эффективность достигается за счет применяемого на гидроэлектростанции оборудования. Оно надежное и относительно простое в использовании. К тому же за счет отсутствия топлива и выделения большого количества тепловой энергии срок службы подобного оборудования достаточно большой. Поломки здесь случаются крайне редко. Считается, что минимальный срок службы генераторных установок и вообще сооружений - около 50 лет. Хотя на самом деле даже сегодня вполне успешно функционируют гидроэлектростанции, которые были построены в тридцатых годах прошлого века.

Гидроэлектростанции России

На сегодняшний день на территории России действует около 100 гидроэлектростанций. Конечно, их мощность разная, и большая часть - это станции с установленной мощностью до 10 МВт. Есть также такие станции, как Пироговская или Акуловская, которые были введены в эксплуатацию еще в 1937 году, а их мощность составляет всего 0.28 МВт.

Самыми крупными являются Саяно-Шушенская и Красноярская ГЭС с мощностью 6400 и 6000 МВт соответственно. За ними следуют станции:

  1. Братская (4500 МВт).
  2. Усть-Илимская ГЭС (3840).
  3. Бочуганская (2997 МВт).
  4. Волжская (2660 МВт).
  5. Жигулевская (2450 МВт).

Несмотря на огромное количество подобных станций, они вырабатывают всего 47700 МВт, что равно 20% от суммарного объема всей производимой энергии в России.

В заключение

Теперь вы понимаете принцип работы ГЭС, преобразовывающих механическую воды в электрическую. Несмотря на достаточно простую идею получения энергии, комплекс оборудования и новые технологии делают подобные сооружения сложными. Впрочем, по сравнению с они действительно являются примитивными.

Перспектива дефицита и дороговизна минеральных энергоресурсов заставляют уделять больше внимания возобновляемым источникам энергии. Самым эффективным из них на сегодняшний день является гидроэнергия. Современные ГЭС аккумулируют ее и превращают в электричество, обеспечивая низкую себестоимость киловатта и высокую мощность.

Принцип работы ГЭС – это использование силы падающей воды для вращения вала электрогенератора. Напор воды подается на лопасти турбины, которая раскручивает ротор. Электрический ток от генератора поступает на трансформаторы, выравнивается, передается на распределительные станции и оттуда – по линиям электропередач к конечному потребителю. Выработка энергии напрямую зависит от напора воды в ГЭС, количества и типа установленных турбин.

Естественный перепад высот на реках, который обеспечил бы нужный напор, почти не встречается в природе. Поэтому самой сложной задачей при возведении конструкции является строительство напорных сооружений. В зависимости от их типа и классифицируют гидростанции:


ГАЭС строят при необходимости компенсировать резкий рост энергопотребления в пиковые часы. Наличие гидроаккумулятора позволяет достигнуть максимального КПД в отдельные моменты, а когда он не нужен, переключить станцию в режим насоса и накопления воды. При этом она работает от собственного электричества, полученного в режиме генератора.

Особенности возведения и эксплуатации

Выбор определенной модификации ГЭС определяется особенностями местности и расчетной эффективностью речного потока. Общая схема всех видов в обязательном порядке включает сорозаборные решетки на входных отверстиях, центр управления и контроля, площадку для обслуживания электрооборудования и трансформаторы, преобразующие вырабатываемое электричество в 220 V или другой необходимый стандарт напряжения.

Для сооружения генератора ГЭС используют распространенные унифицированные элементы. Все оборудование износостойкое, обладает большим сроком эксплуатации и минимальными требованиями к обслуживанию. Но в целом устройство каждой станции уникально. Конструкцию, привязанную к конкретному географическому району, нельзя повторить, как нельзя найти и две идентичные по условиям бассейна реки.

Разобравшись, как работает гидроэлектростанция, можно сформулировать ее преимущества относительно ТЭС и АЭС:

  • вода - возобновляемый и чистый источник энергии;
  • высокий КПД;
  • отсутствие расходов на топливо;
  • снижение затрат на обслуживание и персонал;
  • низкий уровень риска аварий.

Причина, по которой выработка электроэнергии ГЭС составляет лишь около 20% от мирового производства электричества, заключается в необратимом влиянии на экосистему по всему руслу реки и ирригацию прилегающих территорий. Размеры всего гидроузла, включая водохранилище, достигают сотен тысяч га. До сих пор не существует надежных методов комплексной оценки масштабов такого влияния.

Технические нюансы

ГЭС выходят на проектную мощность быстрее, чем другие электростанции. Вследствие того, что природный напор воды непостоянен, сооружения без компенсаторных механизмов выдают разную производительность. В качестве основной характеристики для гидроэлектростанций принято брать установленную мощность всех ее генераторов. В зависимости от этого различают:

  • установленная мощность свыше 1000 МВт;
  • от 100 до 1000 МВт;
  • от 10 до 100 МВт;
  • до 10 МВт.

По высоте напорного потока ГЭС делятся на:

  • высоконапорные - свыше 60 м;
  • средненапорные - от 25 м;
  • низконапорные - от 3 до 25 м.

От силы потока зависит выбор типа турбины. В высоконапорных ГЭС используют ковшевую, не погружаемую конструкцию. Вода в нее подается сильной струей из сопел и толкает ковши. При более низком напоре применяют радиально-осевые или поворотно-лопастные аппараты. Они полностью погружены в емкость с водой, имеют различный наклон оси, строение и количество лопастей, за счет своей конструкции раскручиваются при потоке небольшой силы. Камеры для турбин производят из стали или железобетона. Здание с электрооборудованием может располагаться непосредственно внутри плотины, рядом с ней или, в случае деривационного типа, далеко от источника воды. В состав сооружений ГЭС включают шлюзы для судов, рыбоходы, водосбросы, ирригационные отводы при условии, что такое дополнение необходимо для поддержания действующей транспортной, сельскохозяйственной или экосистемы в пойме реки.

Гидроэлектростанция (ГЭС) - комплекс сооружений и оборудования, посредством которых энергия потока воды преобразуется в электрическую энергию. Гидроэлектростанции обычно строят на реках, сооружая плотины и водохранилища. Для эффективного производства электроэнергии на ГЭС необходимы два основных фактора: гарантированная обеспеченность водой круглый год и возможно большие уклоны реки. Благоприятствуют гидростроительству каньонобразные виды рельефа.

В состав гидроузла на равнинной реке входят: плотина, здание электростанции, водосбросные, судопропускные (шлюзы), рыбопропускные сооружения и др.

Принцип работы. Принцип работы ГЭС достаточно прост (рис. Д.1). Цепь гидротехнических сооружений обеспечивает необходимый напор воды, а энергетическое оборудование преобразует энергию движущейся под напором воды в механическую энергию движения турбины, которая приводит в действие генераторы, вырабатывающие электроэнергию.

Рисунок Д.1 - Схема гидроэлектростанции

Мощность ГЭС определяется расходом и напором воды. На ГЭС, как правило, напор воды образуется посредством строительства плотины или деривацией - естественным током воды. В некоторых случаях для получения необходимого напора воды используют совместно и плотину, и деривацию. Водное пространство перед плотиной называется верхним бьефом, а ниже плотины - нижним бьефом. Разность уровней верхнего (УВБ) и нижнего бьефа (УНБ) определяет напор Н. Верхний бьеф образует водохранилище, в котором накапливается вода, используемая по мере необходимости для выработки электроэнергии.

Непосредственно в самом здании гидроэлектростанции располагается все энергетическое оборудование. В зависимости от назначения, оно имеет свое определенное деление. В машинном зале расположены гидроагрегаты, непосредственно преобразующие энергию тока воды в электрическую энергию. Есть еще всевозможное дополнительное оборудование, устройства управления и контроля над работой ГЭС, трансформаторная станция, распределительные устройства и многое другое.

Классификация ГЭС . Гидроэлектрические станции разделяются в зависимости от:

1) вырабатываемой мощности:

мощные - вырабатывают от 25 МВт и выше;

средние - до 25 МВт;

малые гидроэлектростанции - до 5 МВт.

2) максимального использования напора воды:

высоконапорные - более 60 м;

средненапорные - от 25 м;

низконапорные - от 3 до 25 м.

3) принципа использования природных ресурсов , и, соответственно, образующейся концентрации воды:

Русловые и плотинные ГЭС. Это наиболее распространенные виды гидроэлектрических станций. Напор воды в них создается посредством установки плотины, полностью перегораживающей реку, или поднимающей уровень воды в ней на необходимую отметку. При этом неизбежно некоторое затопление долины реки. Такие гидроэлектростанции строят на многоводных равнинных реках, а также на горных реках, в местах, где русло реки более узкое, сжатое.

Приплотинные ГЭС. Строятся при более высоких напорах воды. В этом случае река полностью перегораживается плотиной, а само здание ГЭС располагается за плотиной, в нижней её части. Вода, в этом случае, подводится к турбинам через специальные напорные тоннели, а не непосредственно, как в русловых ГЭС.

Деривационные гидроэлектростанции. Такие электростанции строят в тех местах, где велик уклон реки. Необходимая концентрация воды в ГЭС такого типа создается посредством деривации. Вода отводится из речного русла через специальные водоотводы. Последние - спрямлены, и их уклон значительно меньший, нежели средний уклон реки. В итоге вода подводится непосредственно к зданию ГЭС. Деривационные ГЭС могут быть разного вида - безнапорные или с напорной деривацией. В случае с напорной деривацией, водовод прокладывается с большим продольным уклоном. В другом случае в начале деривации на реке создается более высокая плотина, и создается водохранилище - такая схема еще называется смешанной деривацией, так как используются оба метода создания необходимой концентрации воды.

Гидроаккумулирующие электростанции. Такие ГАЭС способны аккумулировать вырабатываемую электроэнергию, и пускать её в ход в моменты пиковых нагрузок. Принцип работы таких электростанций следующий: в определенные периоды (не пиковой нагрузки), агрегаты ГАЭС работают как насосы от внешних источников энергии и закачивают воду в специально оборудованные верхние бассейны. Когда возникает потребность, вода из них поступает в напорный трубопровод и приводит в действие турбины.

Турбина. В зависимости от напора воды, в гидроэлектростанциях применяются различные виды турбин. Для высоконапорных - ковшовые и радиально-осевые турбины с металлическими спиральными камерами. На средненапорных ГЭС устанавливаются поворотнолопастные и радиально-осевые турбины, на низконапорных - поворотнолопастные турбины в железобетонных камерах. Принцип работы всех видов турбин схож - вода, находящаяся под давлением (напор воды) поступает на лопасти турбины, которые начинают вращаться. Механическая энергия, таким образом, передается на гидрогенератор, который и вырабатывает электроэнергию. Турбины отличаются некоторыми техническими характеристиками, а также камерами - стальными или железобетонными, и рассчитаны на различный напор воды.

Мощность, развиваемая гидроагрегатом, пропорциональна напору Н и расходу воды Q:

Турбины и генераторы могут устанавливаться непосредственно в дамбе или возле неё. В некоторых случаях используется трубопровод, посредством которого вода, находящаяся под давлением, подводится ниже уровня дамбы или к водозаборному узлу ГЭС.

Плотина . Плотина - гидротехническое сооружение, перегораживающее водоток или водоём для подъёма уровня воды. Также служит для сосредоточения напора в месте расположения сооружения и создания водохранилища.

Плотины могут отличаться в зависимости от конструкции и разделяться на гравитационные, арочные и др. Гравитационные плотины выглядят как каменные или бетонные заграждения. Конструкции этого типа препятствуют поступлению воды своим весом. Арочные выполняют свои обязанности благодаря особой конструкции. Успешное функционирование плотин зависит от трёх показателей: сопротивления вертикальных элементов сооружения, массы и особенностей арочной конструкции, которая опирается на береговые устои. При возведении плотины необходимо учитывать воздействие некоторых внешних факторов. Это так называемые сдвигающие силы, появление которых обусловлено воздействием воды, ветра, ударами волн, перепадами температуры. Пренебрежение строителей к вышеперечисленным факторам может привести к разрушению плотины. Поэтому производятся определённые расчёты, позволяющие воспрепятствовать негативному действию сдвигающих сил.

Отходы . Источниками образования отходов являются здания и сооружения ГЭС, деятельность подразделений станции, а также сопутствующие мероприятия, направленные на обеспечение иной хозяйственной деятельности. На территории станций также, как правило, располагаются дочерние предприятия, осуществляющие ремонтные и вспомогательные работы.

Основными отходами (4–5-го классов опасности) являются отходы (осадки), образующиеся при механической и биологической очистке сточных вод, текстиль, строительный и прочий мусор, разнородные отходы бумаги и картона, стекла, асфальтобетона или асфальтобетонной смеси, железобетона, а также бой строительного кирпича и железобетонных изделий, опилки и обрезь древесины, мусор с защитных решеток электростанций и др. Основным способом обращения с отходами этих классов является передача на утилизацию другим организациям.

Отходы 1-го и 2-го классов опасности (ртутные лампы, люминесцентные ртутьсодержащие трубки, отработавшие срок и заменяемые на энергосберегающие) передаются на утилизацию специализированным организациям.