Как делают полиэтилен. Из чего делают полиэтилен? Производство полиэтилена. Изделия из полиэтилена. Полиэтиленовая труба и ее SDR

Полиэтилен – синтетический термопластичный неполярный полимер, принадлежащий к классу полиолефинов. Продукт полимеризации этилена. Твердое вещество белого цвета. Выпускается в форме полиэтилена низкого давления (полиэтилена высокой плотности), получаемого суспензионным методом полимеризации этилена при низком давлении на комплексных металлоорганических катализаторах в суспензии или газофазным методом полимеризации этилена в газовой фазе на комплексных металлоорганических катализаторах на носителе, и полиэтилена высокого давления (полиэтилен низкой плотности), получаемого при высоком давлении полимеризацией этилена в трубчатых реакторах или реакторах с перемешивающим устройством с применением инициаторов радикального типа. Кроме того, существует несколько подклассов полиэтилена, отличающиеся от традиционных более высокими эксплуатационными характеристиками. В частности, сверхвысокомолекулярный полиэтилен, линейный полиэтилен низкой плотности, полиэтилен, получаемый на металлоценовых катализаторах, бимодальный полиэтилен.
Как правило, полиэтилен выпускают в виде стабилизированных гранул диаметром 2-5 миллиметров в окрашенном и неокрашенном виде. Но возможен и промышленный выпуск полиэтилена в виде порошка.

Обычное обозначение полиэтилена на российском рынке – ПЭ, но могут встречаться и другие обозначения: PE (полиэтилен), ПЭНП или ПЭВД или LDPE или PEBD или PELD (полиэтилен низкой плотности, полиэтилен высокого давления), ПЭВП или ПЭНД или HDPE или PEHD (полиэтилен высокой плотности, полиэтилен низкого давления), ПЭСП или MDPE или PEMD (полиэтилен средней плотности), ULDPE (полиэтилен сверхнизкой плотности), VLDPE (полиэтилен очень низкой плотности), ЛПЭНП или LLDPE или PELLD (линейный полиэтилен низкой плотности), LMDPE (линейный полиэтилен средней плотности), HMWPE или PEHMW или VHMWPE (высокомолекулярный полиэтилен). HMWHDPE (высокомолекулярный полиэтилен высокой плотности), PEUHMW или UHMWPE (сверхвысокомолекулярный полиэтилен), UHMWHDPE (ультравысокомолекулярный полиэтилен высокой плотности), PEX или XLPE (сшитый полиэтилен), PEC или CPE (хлорированный полиэтилен), EPE (вспенивающийся полиэтилен), mLLDPE или MPE (металлоценовый линейный полиэтилен низкой плотности).

Условное обозначение отечественного суспензионного полиэтилена низкого давления, состоит из названия материала «полиэтилен», восьми цифр, характеризующих конкретную марку, и обозначения стандарта, в соответствии с которым полиэтилен изготовлен.
Первая цифра 2 указывает на то, что процесс полимеризации этилена протекает на комплексных металлоорганических катализаторах при низком давлении. Две следующие цифры обозначают порядковый номер базовой марки. Четвертая цифра указывает на степень гомогенизации полиэтилена. Полиэтилен низкого давления подвергается усреднению холодным смешением, которое обозначается цифрой 0. Пятая цифра условно определяет группу плотности полиэтилена:
6 – 0,931-0,939 г/см 3 ;
7 – 0,940-0,947 г/см 3 ;
8 – 0,948-0,959 г/см 3 ;
9 – 0,960-0,970 г/см 3 .
При определении группы плотности берут среднее значение плотности данной марки. Следующие цифры, написанные через тире, указывают десятикратное среднее значение показателя текучести расплава данной марки.
Пример обозначения базовой марки суспензионного полиэтилена низкого давления порядкового номера марки 10, усредненного холодным смешением, плотностью 0,948-0,959 г/см 3 и средним показателем текучести расплава 7,5 г/10 мин:
Полиэтилен 21008-075 ГОСТ 16338-85.
Обозначение композиции полиэтилена низкого давления, не содержащей добавки красителя, состоит из наименования материала «полиэтилен», трех первых цифр обозначения базовой марки, номера рецептуры добавки, написанного через тире, и обозначения стандарта, в соответствии с которым полиэтилен изготовлен.
Пример обозначения композиции суспензионного полиэтилена низкого давления базовой марки 21008-075 с добавками в соответствии с рецептурой 04:
Полиэтилен 210-04 ГОСТ 16338-85.
Пример обозначения композиции газофазного полиэтилена низкого давления марки 271 с добавками в соответствии с рецептурой 70:
Полиэтилен 271-70 ГОСТ 16338-85.
Обозначение композиции полиэтилена низкого давления с добавкой красителя состоит из наименования материала «полиэтилен», трех первых цифр базовой марки, написанного через тире номера рецептуры добавки (при ее наличии), написанного через запятую наименования цвета, трехзначного числа, обозначающего рецептуру окраски, и обозначения стандарта, в соответствии с которым полиэтилен изготовлен.
Пример обозначения базовой марки полиэтилена низкого давления 21008-075 и композиции 210-04 на ее основе, окрашенных в красный цвет по рецептуре 101:
Полиэтилен 210, красный рец. 101 ГОСТ 16338-85,
Полиэтилен 210-04, красный рец. 101 ГОСТ 16338-85.

Базовые марки суспензионного полиэтилена низкого давления: 20108-001; 20208-002; 20308-005; 20408-007; 20508-007; 20608-012; 20708-016; 20808-024; 20908-040; 21008-075.

Базовые марки газофазного полиэтилена низкого давления: 271-70; 271-82; 271-83; 273-71; 273-73; 273-79; 273-80; 273-81; 276-73; 276-75; 276-83; 276-84; 276-85; 276-95; 277-73; 277-75; 277-83; 277-84; 277-85; 277-95.

Условное обозначение отечественного полиэтилена высокого давления состоит из названия «полиэтилен», восьми цифр, сорта и обозначения стандарта, в соответствии с которым полиэтилен изготовлен.
Первая цифра – 1 указывает на то, что процесс полимеризации этилена протекает при высоком давлении в трубчатых реакторах или реакторах с перемешивающим устройством с применением инициаторов радикального типа.
Две следующие цифры обозначают порядковый номер базовой марки. Четвертая цифра указывает на степень гомогенизации полиэтилена:
0 — без гомогенизации в расплаве;
1 — гомогенизированный в расплаве.
Пятая цифра условно определяет группу плотности полиэтилена, г/см 3 .
1 – 0,900-0,909
2 – 0,910-0,916
3 – 0,917-0,921
4 – 0,922-0,926
5 – 0,927-0,930
6 – 0,931-0,939
При определении группы плотности берут её номинальное значение для данной марки.
Следующие цифры, написанные через тире, указывают десятикратное значение показателя текучести расплава.
Пример обозначения полиэтилена высокого давления порядкового номера марки 15, без гомогенизации в расплаве, плотностью 0,917-0,921 г/см 3 и номинальным значением показателя текучести расплава 7 г/10 мин 1-го сорта:
Полиэтилен 11503-070, сорт 1, ГОСТ 16337-77
Обозначение композиций полиэтилена высокого давления состоит из наименования материала «полиэтилен», трех первых цифр обозначения базовой марки, номера рецептуры добавки, написанного через тире, цвета и рецептуры окрашивания, сорта и обозначения стандарта, в соответствии с которым изготовлен полиэтилен.
Пример обозначения композиции полиэтилена высокого давления базовой марки 10204-003 с добавками в соответствии с рецептурой 03, 1-го сорта:
Полиэтилен 102-03, сорт 1, ГОСТ 16337-77
В случае окрашенных композиций полиэтилена высокого давления к обозначению добавляется цвет и трехзначное число, обозначающее рецептуру окраски.
Пример обозначения композиции полиэтилена высокого давления базовой марки 10204-003, окрашенной в розовый цвет по рецептуре 104, 1-го сорта:
Полиэтилен 102, розовый 104, сорт 1, ГОСТ 16337-77
В обозначении полиэтилена высокого давления, предназначенного для изготовления пленок различного назначения, изделий, контактирующих с пищевыми продуктами, питьевой водой, косметическими и лекарственными препаратами, игрушек, а также полиэтилена, подлежащего длительному хранению, дополнительно указывают соответствующее назначение.

Базовые марки полиэтилена высокого давления, полученного в реакторах с перемешивающим устройством: 10204-003; 10604-007; 10703-020; 10803-020; 11304-040; 11503-070; 12003-200; 12103-200.

Базовые марки полиэтилена высокого давления, полученного в реакторах трубчатого типа: 15003-002; 15303-003; 15503-004; 16305-005; 17603-006; 17504-006; 16005-008; 17703-010; 16603-011; 17803-015; 15803-020; 16204-020; 16405-020; 18003-030; 18103-035; 16904-040; 18203-055; 16803-070; 18303-120; 17403-200; 18404-200.

В кабельной промышленности используются композиции на основе полиэтилена высокого давления (низкой плотности) и низкого давления (высокой плотности) со стабилизаторами и другими добавками, предназначенные для наложения изоляции, оболочек и защитных покровов проводов и кабелей методом экструзии.
Марки композиций полиэтилена для кабельной промышленности устанавливаются на основе базовых марок полиэтилена высокого давления 10204-003, 15303-003, 10703-020, 18003-030, 17803-015 и рецептур добавок 01, 02, 04, 09, 10, 93-97, 99, 100, марки 10703-020 и рецептур 61 и полиэтилена низкого давления (суспензионный метод) 20408-007, 20608-012, 20708-016, 20808-024 и рецептур добавок 07, 11, 12, 19, 57 полиэтилена низкого давления (газофазный метод) на основе марки 271-порошок и рецептур добавок 70, 82, 83, марки 273-порошок и рецептур добавок 71, 81.
Обозначение марок композиций полиэтилена для кабельной промышленности состоит из наименования материала «полиэтилен», трех первых цифр обозначения базовой марки полиэтилена, номера рецептуры добавок, написанного через тире, и буквы «К», обозначающей применение композиций полиэтилена в кабельной промышленности, и обозначения стандарта, в соответствии с которым изготовлен полиэтилен для кабельной промышленности.
Пример условного обозначения композиции для кабельной промышленности на основе полиэтилена высокого давления базовой марки 10204-003 с добавками в соответствии с рецептурой 09:
Полиэтилен 102-09К ГОСТ 16336-77
Пример условного обозначения композиции для кабельной промышленности на основе полиэтилена низкого давления базовой марки 20408-007 с добавками в соответствии с рецептурой 07:
Полиэтилен 204-07К ГОСТ 16336-77

При заказе полиэтилена после обозначения марки указывают сорт. Для полиэтилена, предназначенного для изготовления электротехнических изделий и изделий, контактирующих с пищевыми продуктами, питьевой водой, косметическими и лекарственными препаратами, игрушек, контактирующих и не контактирующих с полостью рта, а также для полиэтилена, подлежащего длительному хранению, дополнительно указывают соответствующее назначение.

Но на рынке присутствуют и другие марки полиэтилена, поскольку большинство производителей работает в соответствии с собственными ТУ, отражающими развитие индустрии полимерных материалов, за которым система стандартизации не всегда успевает.

Строение : Полиэтилен является продуктом полимеризации этилена, химическая формула которого С 2 Н 4 . В процессе полимеризации происходит разрыв двойной связи этилена и образуется полимерная цепь, элементарное звено которой состоит из двух атомов углерода и четырех атомов водорода:

Н Н
– С – С –
Н Н В процессе полимеризации может происходить разветвление полимерной цепи, когда к растущей главной цепи сбоку присоединяется короткая полимерная группа.
Разветвленность полимерной цепи препятствует плотной упаковке макромолекул и приводит к образованию рыхлой аморфно-кристаллической структуры материала и, как следствие, к уменьшению плотности полимера и понижению температуры размягчения. Различная степень разветвленности полимерной цепи полиэтиленов высокого и низкого давления и определяет различие свойств этих материалов.
Так у полиэтилена высокого давления разветвленность цепи 15-25 ответвлений на 1000 атомов углерода цепи, а у полиэтилена низкого давления – 3-6 на 1000 атомов углерода цепи. Соответственно, плотность, температуры плавления и размягчения, степень кристалличности у ПЭВД, который еще называют «полиэтиленом с разветвленной цепью», меньше, чем у ПЭНД, способ полимеризации которого обусловливает малую разветвленность.

Свойства : Полиэтилен – пластический материал с хорошими диэлектрическими свойствами. Ударостойкий, не ломающийся, с небольшой поглотительной способностью. Физиологически нейтральный, без запаха. Обладает низкой паро и газопроницаемостью. Полиэтилен не реагирует со щелочами любой концентрации, с растворами любых солей, карбоновыми, концентрированной соляной и плавиковой кислотами. Устойчив к алкоголю, бензину, воде, овощным сокам, маслу. Разрушается 50%-ной азотной кислотой, а также жидкими и газообразными хлором и фтором. Не растворим в органических растворителях и ограниченно набухает в них. Полиэтилен стоек при нагревании в вакууме и атмосфере инертного газа. Но на воздухе деструктируется при нагревании уже при 80 °С. Устойчив к низким температурам до –70 °С. Под действием солнечной радиации, особенно ультрафиолетовых лучей, подвергается фотодеструкции (в качестве светостабилизаторов используется сажа, производные бензофенонов). Практически безвреден, из него не выделяются в окружающую среду опасные для здоровья человека вещества.
Полиэтилен легко перерабатывается всеми основными способами переработки пластмасс. Легко подвергается модификации. Посредством хлорирования, сульфирования, бромирования, фторирования ему можно придать каучукоподобные свойства, улучшить теплостойкость, химическую стойкость. Сополимеризацией с другими олефинами, полярными мономерами повысить стойкость к растрескиванию, эластичность, прозрачность, адгезионные характеристики. Смешением с другими полимерами или сополимерами улучшить ударную вязкость и другие физические свойства.
Химические, физические и эксплуатационные свойства полиэтилена зависят от плотности и молекулярной массы полимера, а потому различны для различных видов полиэтилена. Так, например, ПЭВД(полиэтилен с разветвленной цепью) мягче, чем ПЭНД, следовательно пленки из полиэтилена низкого давления более жесткие и плотные, чем из полиэтилена высокого давления. Их прочность при растяжении и сжатии выше, сопротивление раздиру и удару ниже, а проницаемость в 5-6 раз ниже, чем у пленок из ПЭВД.
Сверхвысокомолекулярный полиэтилен с молекулярной массой более 1 000 000 имеет повышенные прочностные качества. Температурный интервал его эксплуатации от -260 до +120 °С. Он обладает низким коэффициентом трения, высокой износостойкостью, стойкостью к растрескиванию, химической стойкостью в наиболее агрессивных средах.

Свойства ПЭНД в соответствии с ГОСТ 16338-85.
1. Плотность – 0,931-0,970 г/см 3 .
2. Температура плавления – 125-132 °С.
3. Температура размягчения по Вика в воздушной среде – 120-125 °С.
4. Насыпная плотность гранул – 0,5-0,6 г/см 3 .
5. Насыпная плотность порошка – 0,20-0,25 г/см 3 .
6. Разрушающее напряжение при изгибе –19,0-35,0 МПа
7. Предел прочности при срезе – 19,0-35,0 МПа.
8. Твердость по вдавливанию шарика под заданной нагрузкой – 48,0-54,0 МПа.
9. Удельное поверхностное электрическое сопротивление – 10 14 Ом.
10. Удельное объемное электрическое сопротивление – 10 16 -10 17 Ом·см.
11. Водопоглощение за 30 суток – 0,03-0,04 %.
12. Тангенс угла диэлектрических потерь при частоте 10 10 Гц – 0,0002-0,0005.
13. Диэлектрическая проницаемость при частоте 10 10 Гц – 2,32-2,36.
14. Удельная теплоемкость при 20-25 °С – 1680-1880 Дж/кг·°С.
15. Теплопроводность – (41,8-44)·10 -2 В/(м·°С).
16. Линейный коэффициент термического расширения – (1,7-2,0)·10 -4 1/°С.

Свойства ПЭВД в соответствии с ГОСТ 16337-77.
1. Плотность – 0,900-0,939 г/см 3 .
2. Температура плавления – 103-110 °С.
3. Насыпная плотность – 0,5-0,6 г/см 3 .
4. Твердость по вдавливанию шарика под заданной нагрузкой – (1,66-2,25)·10 5 Па; 1,7-2,3 кгс/см 2 .
5. Усадка при литье – 1,0-3,5 %.
6. Водопоглощение за 30 суток – 0,020 %.
7. Разрушающее напряжение при изгибе – (117,6-196,07)·10 5 Па; 120-200 кгс/см 2 .
8. Предел прочности – (137,2-166,6)·10 5 Па; 140-170 кгс/см 2 .
9. Удельное объемное электрическое сопротивление – 10 16 -10 17 Ом·см.
10. Удельное поверхностное электрическое сопротивление – 10 15 Ом.
11. Температура хрупкости для полиэтилена с показателем текучести расплава в г/10 мин
0,2-0,3 – не выше минус 120 °С,
0,6-1,0 – не выше минус 110 °С,
1,5-2,2 – не выше минус 100 °С,
3,5 – не выше минус 80 °С,
5,5 – не выше минус 70 °С,
7-8 – не выше минус 60 °С,
12 – не выше минус 55 °С,
20 – не выше минус 45 °С.
12. Модуль упругости (секущий) для полиэтилена плотностью в г/см 2
0,917-0,921 – (882,3-1274,5)·10 5 Па; 900-1300 кгс/см 2 ,
0,922-0,926 – (1372-1764,7)·10 5 Па; 1400-1800 кгс/см 2 ,
0,928 – 2107,8 ·10 5 Па; 2150 кгс/см 2 .
13. Тангенс угла диэлектрических потерь при частоте 10 10 0 Гц – 0,0002-0,0005.
14. Диэлектрическая проницаемость при частоте 10 10 Гц – 2,25-2,31.

Сравнительный анализ характеристик ПЭНД и ПЭВД показывает, что ПЭНД, вследствие более высокой плотности, имеет более высокие прочностные показатели: теплостойкость, жесткость и твердость, обладает большей стойкостью к растворителям, чем ПЭВД, но менее морозоустойчив. Несколько хуже, чем у ПЭВД (из-за остатков катализаторов), высокочастотные электрические характеристики, однако это не ограничивает применения ПЭНД в качестве электроизоляционного материала. Кроме того, наличие остатков катализаторов не позволяет использовать ПЭНД в контакте с пищевыми продуктами (требуется отмывка от катализаторов). Благодаря более плотной упаковке макромолекул проницаемость ПЭНД ниже, чем у ПЭВД примерно в 5-6 раз. По химической стойкости ПЭНД также превосходит ПЭВД (особенно по стойкости к маслам и жирам). Но пленки из ПЭВД более проницаемы для газов, а потому непригодны для упаковки продуктов, чувствительных к окислению.

Получение : В промышленности полиэтилен получают полимеризацией этилена при высоком (ПЭВД, ПЭНП) и низком давлениях (ПЭНД, ПЭВП).

Полиэтилен высокого давления (низкой плотности) получается полимеризацией этилена при высоком давлении в трубчатых реакторах или реакторах с перемешивающим устройством с применением инициаторов радикального типа.
Полиэтилен высокого давления выпускают без добавок – базовые марки, или в виде композиций на их основе со стабилизаторами и другим и добавками в окрашенном и неокрашенном виде.

Полиэтилен низкого давления (высокой плотности), получают суспензионным методом полимеризации этилена при низком давлении на комплексных металлоорганических катализаторах в суспензии или газофазным методом полимеризации этилена в газовой фазе на комплексных металлоорганических катализаторах на носителе или полимеризацией этилена в растворе в присутствии титан-магниевого катализатора или CrO 3 на силикагеле.
Полиэтилен, получаемый суспензионным методом (суспензионный полиэтилен), выпускают без добавок (базовые марки) и в виде композиций на их основе со стабилизаторами, красителями и другими добавками.
Полиэтилен, получаемый газофазным методом (газофазный полиэтилен), выпускают в виде композиций со стабилизаторами.

Процесс полимеризации при высоком давлении протекает по радикальному механизму, инициаторами являются кислород, пероксиды, например, лаурила или бензоила, или их смесей.
При производстве ПЭВД в трубчатом реакторе этилен, смешанный с инициатором, сжатый компрессором до 25 МПа и нагретый до 70 °С, поступает сначала в первую зону реактора, где подогревается до 180°С, а затем во вторую, где полимеризуется при 190-300 °С и давлении 130-250 МПа. Среднее время пребывания этилена в реакторе 70-100 с, степень превращения 18-20% в зависимости от количествава и типа инициатора. Из полиэтилена удаляют непрореагировавший этилен, расплав охлаждают до 180-190 °С и гранулируют. Гранулы, охлажденные водой до 60-70 °С, подсушивают теплым воздухом и упаковывают в мешки.
Принципиальная схема производства ПЭВД в автоклаве с перемешивающим устройством отличается от производства в трубчатом реакторе тем, что инициатор в парафиновом масле подается специальным насосом высокого давления непосредственно в реактор. Процесс проводят при 250 °С и давлении 150 МПа. Среднее время пребывания этилена в реакторе – 30 с. Степень превращения – около 20%.
Товарный полиэтилен высокого давления выпускают окрашенным и неокрашенным, в гранулах диаметром 2-5 мм.

Процесс полимеризации при низком давлении протекает по координационно-ионному механизму.
Получения ПЭНД в суспензии включает следующие стадии: приготовление суспензии катализатора и раствора активатора в виде комбинации триэтилалюминия и производных титана; полимеризацию этилена при температуре 70-95 °С и давлении 1,5-3,3 МПа; удаление растворителя, сушку и гранулирование полиэтилена. Степень превращения этилена – 98%. Концентрация полиэтилена в суспензии – 45%. Единичная мощность реакторов с усовершенствованной системой теплосъема – до 60-75 тыс. т/год.
Технологическая схема получения ПЭНД в растворе осуществляется, как правило, в гексане при 160-250 °С и давлении 3,4-5,3 МПа в присутствии титан-магниевого катализатора или CrO 3 на силикагеле. Время контакта с катализатором 10-15 мин. Полиэтилен из раствора выделяют удалением растворителя последовательно в испарителе, сепараторе и вакуумной камере гранулятора. Гранулы полиэтилена пропаривают водяным паром при температуре, превышающей температуру плавления полиэтилена, чтобы в воду перешли низкомолекулярные фракции полиэтилена и нейтрализовались остатки катализатора. Преимущества полимеризации в растворе перед полимеризацией в суспензии в том, что исключаются стадии отжима и сушки полимера, появляется возможность утилизации теплоты полимеризации для испарения растворителя, облегчается регулирование молекулярной массы полиэтилена.
Газофазную полимеризацию этилена проводят при 90-100 °С и давлении 2 МПа с хромсодержащими соединениями на силикагеле в качестве катализатора. В нижней части реактор имеет перфорированную решетку для равномерного распределения подаваемого этилена с целью создания кипящего слоя, в верхней – расширенную зону, предназначенную для снижения скорости газа и улавливания частиц образовавшегося полиэтилена.
Товарный полиэтилен низкого давления выпускают окрашенным и неокрашенным, обычно в гранулах диаметром 2-5 мм, реже – в виде порошка.

Применение различных катализаторов позволяет поручать разновидности полиэтилена с улучшенными эксплуатационными качествами.
Так, полимеризацией в растворителе в присутствии оксидов Со, Мо, V при 130-170 °С и давлении 3,5-4 МПа получают полиэтилен среднего давления (ПЭСД), разветвленность цепи которого менее 3 ответвлений на 1000 атомов углерода, что повышает его прочностные качества и термостойкость по сравнению с ПЭНД.
Металлоценовые катализаторы делают возможной управляемую полимеризацию по длине цепи, что позволяет получать полиэтилен с заданными потребительскими характеристиками.
Если процесс полимеризации происходит при низком давлении в присутствии металлоорганических соединений, то получается полиэтилен с высокой молекулярной массой и строголинейной структурой, который в отличие от обычного ПЭНД обладает повышенными прочностными показателями, низким коэффициентом трения и высокой износостойкостью, стойкостью к растрескиванию, химической стойкостью в наиболее агрессивных средах.
Химической модификацией ПЭВД получен линейный полиэтилен низкой плотности – ЛПЭНП, который представляет собой легкий эластичный кристаллизующийся материал с теплостойкостью по Вика до 118 °С. Более стоек к растрескиванию, имеет большую ударную прочность и теплостойкость, чем ПЭВД.
При наполнении ПЭВД крахмалом может быть получен материал, представляющий интерес в качестве биоразрушаемого материала.

Основные производители полиэтилена низкого давления для российского рынка:
Ставролен – в частности, Ставролен РЕ4FE69, Ставролен РЕ4EC04S, Ставролен РЕ3IM61, Ставролен РЕ0ВМ45, Ставролен РЕ3ОТ49, Ставролен РЕ4ВМ42, Ставролен, РЕ4ВМ50В, Ставролен РЕ4ВМ41, Ставролен РЕЕС05, Ставролен РЕ4РР25В;
Казаньоргсинтез – в частности, ПНД 277-73, ПНД 276-73, ПНД 293-285Д, ПНД 273-83, ПНД ПЭ80Б-275, ПНД ПЭ80Б-285Д, ПНД 273-79;
Шуртанский ГХК – в частности, B-Y456, B-Y460, I-0760, I-1561.

Основные производители полиэтилена высокого давления для российского рынка:
Казаньоргсинтез – в частности, ПВД 15813-020, ПВД 15313-003, ПВД 10803-020;
Томскнефтехим – в частности, ПВД 15803-020, ПВД 15313-003;
Уфаоргсинтез – в частности, ПВД 15803-020.

Основные производители полиэтилена кабельных марок для российского рынка:
Казаньоргсинтез – в частности, ПВД 153-02К, ПВД 153-10К, 271-274К;
Шуртанский ГХК – в частности, WC-Y436.

Полиэтилен трубных марок P-Y337 MDPE, P-Y342 HDPE, P-Y456 HDPE производит Шуртанский ГХК. Это же предприятие выпускает пленочный полиэтилен F-Y346, F-0220S, F-0120S, F0120, F0220.

Применениe : Полиэтилен – наиболее широко использующийся полимер. Он лидирует в мировом выпуске полимерных материалов – 31,5% от общего объема производимых полимеров. Технология изготовления изделий из полиэтилена сравнительно проста. Он может быть подвержен переработке всеми известными методами. Сваривается всеми основными способами: горячим газом, присадочным прутком, трением, контактной сваркой.
Для работы с полиэтиленом не требуется применения узкоспециализированного оборудования, как например, для переработки ПВХ, а современная промышленностью выпускает сотни марок добавок и красителей для придания изделиям из полиэтилена самых разнообразных потребительских качеств.
Применяя литье под давлением, из полиэтилена изготавливают широкий спектр товаров бытового назначения, канцтоваров, игрушек. При использовании экструзии получают полиэтиленовые трубы (существует специальные марки – трубный PE63, PE80, PE100), полиэтиленовые кабели (весьма перспективен сшитый полиэтилен), листовой полиэтилен для упаковки и строительства, а также самые разнообразные полиэтиленовые пленки для нужд всех отраслей промышленности. Экструзионно-выдувным и ротационным формованием из полиэтилена создают разного рода емкости, сосуды, тару. Термовакуумным формованием – разнообразные упаковочные материалы. Различные специальные виды полиэтилена, такие как сшитый, вспененный, хлорсульфированный, сверхвысокомолекулярный успешно применяются для создания специальных стройматериалов. Отдельный сегмент современного рынка – рециклинг полиэтилена. Многие компании в России и мире специализируются на покупке полиэтиленовых отходов с дальнейшей переработкой и продажей или использованием вторичного полиэтилена. Как правило, для этого применяется технология экструдирования очищенных отходов и последующим дроблением и получением вторичного гранулированного материала пригодного для изготовления изделий.
Наиболее широко полиэтилен применяют для производства пленок технического и бытового назначения. Преимущества всех типов полиэтилена для упаковочных целей: малая плотность, хорошая химическая стойкость, незначительное водопоглощение, хорошая прозрачность, легкая перерабатываемость, хорошая свариваемость, непроницаемость для водяного пара, высокая вязкость, гибкость, растяжимость и эластичность. Полиэтиленовые пленки используются для производства пакетов для хлеба, овощей, мяса, птицы, мешков для мусора, упаковочных пленок для закрепления грузов. ПЭВД используется для изготовления комбинированных пленок соэкструзией с другими термопластичными полимерами и для нанесения на бумагу, картон, целлофан, алюминиевую фольгу. Во всех этих комбинированных пленках слой ПЭВД придает пленке отличную свариваемость, а другие слои – прочность и непроницаемость для запахов. Для получения определенных свойств осуществляют преобразование полиэтилена винилацетатом. Эти пленки при хорошей прочности более прозрачны и лучше свариваются. Благодаря этому при нагреве и адгезии с другими материалами, они становятся пригодны также для нанесения на картон и другие упаковочные материалы. Отечественный сополимер этилена с винилацетатом, получаемый совместной полимеризацией этилена и винилацетата в массе под высоким давлением, известен под торговой маркой Сэвилен, который широко используется при производстве витых шлангов для воздухоотсосов от различного оборудования.
Полиэтилен используется для производства:
пленок: сельскохозяйственных, упаковочных, термоусадочных, стретч;
труб: газовых, водопроводных, напорных, ненапорных;
емкостей: цистерн, канистр, бутылей;
стройматериалов;
волокон;
предметов домашнего обихода;
санитарно-технических изделий;
деталей автомашин и другой техники;
изоляции электрокабелей;
пенополиэтилена;
протезов внутренних органов;
И это далеко не предел возможностей использования полиэтилена. Тем более, что на рынок постоянно выходят новые марки этого полимера с новыми потребительскими свойствами.
Например, сверхвысокомолекулярный полиэтилен (СВМПЭ), применяемый для изготовления высокопрочных технических изделий, стойких к удару, растрескиванию и истиранию: шестерен, втулок, муфт, роликов, валиков, звездочек, а также изолирующих деталей аппаратуры, работающей в диапазоне высоких и сверхвысоких частот. Кроме того, СВМПЭ находит широкое применение в изготовлении пористых изделий: фильтров, глушителей шума, прокладок, а в эндопротезировании – при создании суставов, черепных и челюстно-лицевых протезов.

Основные производимые марки полиэтилена:
Композиция полиэтилена высокой плотности ПЭ2НТ26-16
Композиция сэвилена 113-27
Композиция сэвилена 113-31
Линейный полиэтилен низкой плотности F-0120
Линейный полиэтилен низкой плотности F-0220
Линейный полиэтилен низкой плотности F-Y620
Линейный полиэтилен низкой плотности F-Y720
Полиэтилен высокого давления (ПЭВД) 15303-003 ГОСТ 16337-77 высшего сорта
Полиэтилен высокого давления (ПЭВД) 15303-003 ГОСТ 16337-77 первого сорта
Полиэтилен высокого давления (ПЭВД) 15803-020 ГОСТ 16337-77 высшего сорта
Полиэтилен высокого давления (ПЭВД) 15803-020 ГОСТ 16337-77 первого сорта
Полиэтилен высокой плотности B-Y250
Полиэтилен высокой плотности B-Y456
Полиэтилен высокой плотности B-Y460
Полиэтилен высокой плотности F-Y346
Полиэтилен высокой плотности I-0754
Полиэтилен высокой плотности I-0760
Полиэтилен высокой плотности I-1561
Полиэтилен высокой плотности O-Y446
Полиэтилен высокой плотности O-Y750
Полиэтилен высокой плотности O-Y762
Полиэтилен высокой плотности P-Y342
Полиэтилен высокой плотности P-Y456
Полиэтилен высокомолекулярный низкого давления 21606 второго сорта
Полиэтилен высокомолекулярный низкого давления 21606 первого сорта
Полиэтилен для кабельной промышленности 153-01К ГОСТ 16336-77 высшего сорта
Полиэтилен для кабельной промышленности 153-01К ГОСТ 16336-77 первого сорта
Полиэтилен для кабельной промышленности 153-02К ГОСТ 16336-77 высшего сорта
Полиэтилен для кабельной промышленности 153-02К ГОСТ 16336-77 первого сорта
Полиэтилен для кабельной промышленности 153-10К ГОСТ 16336-77 высшего сорта
Полиэтилен для кабельной промышленности 153-10К ГОСТ 16336-77 первого сорта
Полиэтилен марки HFP-4612H
Полиэтилен марки HMI-6582M
Полиэтилен марки HXF 4810H
Полиэтилен марки HXF-4607
Полиэтилен марки HXF-5115
Полиэтилен марки LLI-2420
Полиэтилен марки MXP-3920H
Полиэтилен марки SHF-2680РН
Полиэтилен марки SHF-3080H
Полиэтилен марки SMF 2210
Полиэтилен марки SMF-1810
Полиэтилен марки SMF-1810H
Полиэтилен марки НХВ 5115Н
Полиэтилен марки НХВ 5210Н
Полиэтилен низкого давления марки 271-70 К
Полиэтилен низкого давления марки 271-81 К
Полиэтилен низкого давления марки 273-79
Полиэтилен низкого давления марки 273-83
Полиэтилен низкого давления марки 276-73
Полиэтилен низкого давления марки 277-73
Полиэтилен низкого давления марки F 3802B
Полиэтилен низкого давления марки РЕ 3 OT 49
Полиэтилен низкого давления марки РЕ 4 BM 41
Полиэтилен низкого давления марки РЕ 4 FE 69
Полиэтилен низкого давления марки РЕ 4 ЕС 04S
Полиэтилен низкого давления марки РЕ 4 РР 21 В
Полиэтилен низкого давления марки РЕ 4 РР 25 В
Полиэтилен низкого давления марки РЕ 6 GP 26 B
Полиэтилен низкой плотности I-0525
Полиэтилен низкой плотности I-1625
Полиэтилен низкой плотности WC-Y436
Полиэтилен низкой плотности WC-Y736
Полиэтилен средней плотности F-Y240
Полиэтилен средней плотности F-Y336
Полиэтилен средней плотности P-Y337
Полиэтилен средней плотности R-0333 U
Полиэтилен средней плотности R-0338 U
Сэвилен 11104-030
Сэвилен 11205-040
Сэвилен 11306-075
Сэвилен 11407-027
Сэвилен 11507-070
Сэвилен 11607-040
Сэвилен 11708-210
Сэвилен 11808-340
Сэвилен 11908-125
Сэвилен 12206-007
Сэвилен 12306-020
Сэвилен 12508-150

Полимер представляет собой органическое соединение, относится к классу полиолефинов. Термопластичный полимер этилена своеобразная масса прозрачных тонких листов имеет множество практичных качеств, сделавших его незаменимых в обиходе. Его часто называют

История возникновения

Первая дата упоминания об изобретения полиэтилена относится к 1899 г. Родина возникновения химического соединения – Германия. Однако заслуга практичного применения и распространения материала в его современном виде принадлежит инженерам Гибсону и Фосету. С середины прошлого столетия для производства кабельной продукции, позднее для выработки упаковочного материала широкое использование получил синтетический полимерный материал. Так применение полиэтилена в промышленности позволило создавать новые виды продукции.

Химическая формула полиэтилена (CH2CHR)n

Разновидности

Известно две основные группы полимеров, которые различают по прочности и плотности основы материала. Это

  • Полиэтилен высокой плотности (высокого давления)
  • Полиэтилен низкой плотности (низкого давления)
  • Промышленность также выпускает полиэтилен средней плотности.

В разных источниках можно встретить другие названия, к примеру, сополимеры и гомополимеры. Но все они являются производными от двух основных групп. В процессе производства разработаны различные технологии выпуска широко востребованного материала. Именно технологические различия и физические свойства полиэтилена обосновывают разнообразность данного вида продукции.

Высокая прочность материала, другие востребованные свойства, которые обосновывают широкое использование тонкой прозрачной пленки, в сочетании с относительно низкой стоимостью производства, позволяют постоянно расширять область применения. Особенное свойство, обуславливающее термопластичность полиэтилена, вывело продукт на верхние позиции популярных упаковочных материалов.

Особенности химического состава дают поистине неограниченные возможности его использования. В своей основе вещество является высокомолекулярным соединением, которое состоит из длинных разветвленных цепей. В зависимости от технологических особенностей производственного процесса при полимеризации вещества изменяются свойства конечного продукта.

Полимеризация при давлении 130 -150 МПа дает полиэтилен низкой плотности, он более пластичный. Полиэтилен высокой плотности, имеет склонность растрескиваться при физическом воздействии. Это обуславливается тем, что изготавливается в процессе каталитической полимеризации, линейная структура практически не содержит боковых ответвлений.

Свойства

В зависимости от плотности молекулярной массы продукта могут меняться его физические свойства полиэтилена.

Полиэтилен низкого давления свойства :

  • Имеет высокую способность к растяжению.
  • Стоек к химическим соединениям.
  • Не пропускает влагу.
  • Высокая теплостойкость.
  • Морозоустойчивость при сильном охлаждении.

Полиэтилен низкого давления применение :

  • Изготавливается пищевая и упаковочная пленка.
  • Рабочие перчатки и изоляционные материалы.
  • Широкое применение в кабельной промышленности.

Полиэтилен высокого давления свойства :

  • Допускается растрескивание под воздействием нагрузок.
  • Может деформироваться и менять изначальные размеры.
  • Отличается высокой химической стойкостью.
  • Диэлектричен.
  • Высокая радиационная устойчивость.
  • Морозоустойчив.

В промышленности из него изготавливается тара, упаковка для парфюмерной и пищевой промышленности (бутылки, тюбики и др.). Пригоден для изготовления контейнеров, труб и деталей трубопроводов. Разнообразие и физические свойства полиэтилена делают возможным успешно использовать материал в разных сферах деятельности. Материал занимает лидирующие позиции по использованию среди других пластмасс.

Важно. Полиэтилен безопасный для здоровья и экологически безвредный материал. Легко подлежит переработке, используется во вторичной форме.

Основные особенности присущие синтетическому материалу придают различия молекулярно-массовых распределений внутри полимера. Чем выше плотность молекулярной массы, тем жестче и тверже становится пластмасса. Эти химические свойства полиэтилена влияют на влагопроницаемость, прозрачность и стойкость при сохранении целостности поверхности готовой продукции.

Сферы применения

Изделия из полиэтилена применяются практически везде. Из прочного и недорогого материала изготавливают упаковку и контейнера для транспортировки товаров на длительные расстояния. Уникальные диэлектрические свойства полиэтилена нашли свое применение в производстве инструмента, защитной и рабочей одежды, кабельной продукции, товарах бытового применения и многое другое.

Универсальные свойства и применение полиэтилена в самых различных сферах повышает спрос и стимулирует разработку новых видов товаров и изделий. Из пнд изготавливают:

  • Провода для линий электропередач.
  • Изделия для использования в медицине.
  • Геотекстиль.
  • Новые виды строительных и отделочных материалов.
  • Инструменты и инвентарь для садово-огородного применения.
  • Изделия для авиационной промышленности.

Сфер применения полимера много, так применение пнд обусловливают особенности физических свойств и технические характеристики готовой продукции. Структура молекулы полиэтилена нд отличается кристалличностью и имеет иную плотность. Особенности производства – температура изготовления 120-150 0 С, давление до 2 МПа. Для выработки требуется присутствие специального катализатора.

При охлаждении полимера в процессе производства образуются плотные соединение имеющие стабильную устойчивость к высоким температурам. Из такого материала изготавливаются изделия, пригодные для кипячения и контакта с высокотемпературной средой.

Не менее широко используется полиэтилен высокого давления.Его примененяют при изготовлении товаров для морской, автомобильной, строительной промышленности и иных сферах производства. В основу производства легли некоторые химические отличия пластмассы, которые базируются на более низкой степени кристаллизации вещества. ПВД примененяют в следующих направлениях:

  • Изготовления выдувных изделий.
  • Выпуск пленок для упаковки.
  • Литье пластмасс под давлением.
  • Выпуск кабельной продукции.

Процесс изготовления ПЭВД — температура 200- 260 0 С, давление 150 – 300 МПа. Присутствие кислорода или органического пероксида обязательно.

Важно. Легкий эластичный, кристаллизующийся материал с теплостойкостью до 60 0 имеет один существенный недостаток – быстро стареет.

Пленки из полиэтилена

При производстве пленки и листов из полиэтилена может быть использован материал любой плотности. Популярная характеристики которой значительно выше, чем у других видов упаковки — один из самых востребованных и экономичных товаров. Современные технологии позволяют создать пленку из ПЭ толщиной от 0,03 мм, длина рулона достигает 300 м.

Пленка пригодна для упаковки пищевой продукции, сохраняет качество и внешний вид товара. Давно стали привычными некоторые виды спецодежды, изготовленные из непромокаемой пленки – плащи, накидки, перчатки хозяйственные и многое другое.

Армированная пленка характеризуется высокой прочностью и используется для изготовления скатертей, упаковки, защитной одежды, для производства теплиц. Сферы применения изделий из ПЭ постоянно расширяются, свойства полиэтиленовой пленки поистине универсальны.

Упаковочный материал в листах толщиной от 1 до 6 мм с шириной до 1400 мм вырабатывают методом вакуумного формирования. Крупногабаритные изделия из ПЭНД прочно вошли в нашу жизнь. Это трубы сантехнические, ванны, бачки и емкости различного назначения. Технологические приемы разнообразят ассортимент и назначение изделий, товары народного потребления из пластмассы вошли в каждый дом.

Ведущее место в мире сегодня занимает производство изделий из полимера. Ширится разновидность марок изделий. Основные группы, выпускаемые на сегодняшний день из полиэтилена и сополимеров, насчитывает не один десяток, давая возможность развиваться новым технологиям. Выпуск востребованных и качественных товаров постоянно увеличивается, находя новые сферы применения.

Если раньше при монтаже водопровода, канализации, при проведения газа всегда использовали только металлические или чугунные трубы. Альтернативы просто не было. Сегодня все чаще применяют изделия из полимеров, и, в частности, — полиэтиленовые трубы. Они все больше вытесняют с рынка металлические аналоги, а все благодаря невысокой цене, простоте в обращении, длительному сроку эксплуатации. Полярности ПЭ трубам добавляет простота монтажа — есть фитинги, которые устанавливаются руками. Это очень удобно, например, при устройстве водопровода или системы полива на даче.

Водопровод из полиэтиленовых труб собирается легко, легко модернизируется, почти не требует обслуживания

Свойства, достоинства, недостатки

Полиэтиленовые трубы применяют для транспортировки различных жидких и газообразных веществ. В литературе можно встретить сокращенное обозначение: в русском варианте это ПЭ, в международном — PE или PE-X для сшитого полиэтилена.

Они имеет отличные свойства:


Отличный набор свойств привел к тому, что полиэтиленовые трубы становятся все более популярными. Но, чтобы не было неожиданностей, необходимо знать их недостатки. Их не очень много, но они довольно серьезные.

  • Полиэтилен горит, и при горении выделяет вредные вещества.
  • Слабая стойкость к ультрафиолету. Под воздействием солнца материал становится хрупким и ломким. Но этой болезни не подвержены трубы из сшитого полиэтилена, именно они стали в последнее время лидерами продаж.
  • Большое температурное расширение — оно в 10 раз больше чем у стали. Для нейтрализации этого недостатка устанавливается компенсатор.
  • При замерзании жидкости в трубопроводе, полиэтилен может порваться. Потому при использовании полиэтиленовых труб для организации водоснабжения частного дома или дачи, его укладывают ниже глубины промерзания или утепляют сверху, применяют дополнительные методы обогрева (греющие кабели).

Это все недостатки. Теперь о разновидностях. По способу производства есть три вида труб из полиэтилена:


В данных названиях кроется определенный парадокс. Когда говорят о высоком или низком давлении полиэтиленовых труб, имеют в виду способ их производства. Но часто это воспринимается как область использования. Реально же все наоборот. Трубы, произведенные при высоком давлении, получаются менее прочными. Их можно использовать только для безнапорных систем (без насосов). Для систем напорного водоснабжения их делают, но прочность добирают за счет толщины стенок. При обычной толщине стенок их область использования — канализация, дренажные системы, ливневки и т.п. Тут их качества оптимальны.

В напорных трубопроводах, там где высокое давление, используются как раз полиэтиленовые трубы низкого давления. Они более прочные но, одновременно, более хрупкие, намного хуже гнутся. Это тоже не очень хорошо. Зато они выдерживают значительные перепады давления без какого-либо вреда. И еще надо сказать, что оба этих типа полиэтиленовых труб подходят только для холодной воды — горячую они не выдерживают, могут расплавиться.

Трубы из сшитого полиэтилена PE-X применяются при устройстве водяного теплого пола

А вот третий тип — из сшитого полиэтилена — это вариант с высокой прочностью, гибкостью. Выдерживают такие изделия высокое давление (до 20 Атм) и температуры до +95°C, то есть PE-X трубы можно применять и для горячего водоснабжения, а также для систем отопления. Кстати, их этого типа полимера делают металлопластиковые трубы. Однако и тут есть одно «но» — этот тип материала не сваривается. При монтаже трубопровода из сшитого полиэтилена используют фитинги с прокладками. Второй тип сборки — клеевой, когда стыки соединяемых элементов промазываются клеем.

Маркировка и диаметры

Полиэтиленовые трубы обычно бывают черного или ярко-синего цвета, из сшитого полиэтилена могут иметь ярко-красный цвет. Окрашиваются так они специально — чтобы их проще было отличить от прочих полимеров. На стенке вдоль могут быть нанесены полосы синего цвета, если она предназначена для холодной воды, желтого, если применяется она для газопровода. Форма выпуска — в бухтах длиной от 20 до 50 метров (обычно малые диаметры) и кусками по 12 метров (или нужной длины по договоренности).

Пример технических характеристик PE трубы

Диаметры полиэтиленовых труб изменяются в широком диапазоне — от 20 мм до 1200 мм. Изделия малого сечения (до 40 мм) используются в основном для водопроводов и систем отопления в частных домах и квартирах, более серьезные (до 160 мм) идут на стояки систем водоснабжения, отопления и канализации. Большие диаметры — это уже промышленная и производственная сфера. Для частных строений и квартир практически не используется.

Плотность полиэтилена

Для изготовления труб используется полиэтилен разной плотности. Обозначается плотность цифрами, которые стоят после аббревиатуры:

Что еще может быть интересно: полиэтиленовые трубы могут быть еще и армированными. Вообще они производятся методом экструзии — в размягченном состоянии материал выдавливается через насадку, затем отправляется на калибровку, где ему придают требуемое сечение и размер. При производстве армированных полиэтиленовых труб волокна капрона, полистирола или поливинилхлорида (ПВХ) запаиваются внутри стенки. Оборудование для этого процесса намного более сложное, потому и цена на армированные ПЭ трубы значительно выше.

Диаметр полиэтиленовых труб и что такое SDR

В маркировке полимерных труб есть существенное отличие — указывается наружный диаметр. Но толщина стенки изменяется в больших пределах, так что внутренний диаметр приходится высчитывать — от наружного отнимать удвоенную толщину стенки. Толщина стенки в маркировке прописывается после указания наружного диаметра (обычно ставят * или знак «х»). Например: 160 х 14,6. Это обозначает что данная труба имеет наружный диаметр 160 мм, толщину стенки 14,6 мм. Можно посчитать и внутренний диаметр полиэтиленовой трубы: 160 мм — 14,6 мм*2 = 130,8 мм.

Еще в маркировке присутствует аббревиатура SDR и какие-то цифры. Цифры — это отношение наружного диаметра к толщине стенки. Этот показатель отражает прочность стенок и их возможность противостоять скачкам давления.

Что такое SDR трубы

Чем меньше показатель SDR, тем более прочной (но и более тяжелой) является труба. Правда это справедливо в пределах изделий одной плотности. Например, ПЭ 80 SDR11 — более прочная, чем ПЭ 80 SDR 17.

Наименование ПЭ трубы Характеристики Область применения
ПЭ 63 SDR 11 Низкая плотность, плохо переносят перепады температур Внутренние холодные трубопроводы
ПНД ПЭ-63 SDR 17,6 ГОСТ 18599-2001(2003), давление не выше 10 Атм Внутренние водопроводы с невысоким давлением для подвода холодной воды
ПЭ 80 SDR 13,6 Плотность выше, но перепады температур переносят плохо Водопроводы для подвода холодной воды, системы полива
ПЭ 80 SDR 17 Плотность выше, но перепады температур Водопроводы как в помещениях, так и на улице, напорные системы полива
ПЭ 100 SDR 26 Высока плотность, способность переносить перепады температур Любые трубопроводы для транспортировки жидкостей (воды, молока, соков и т.п.)
ПЭ 100 SDR 21 Увеличенная толщина стенок Любые трубопроводы, в том числе и газовые
ПЭ 100 SDR 17 Увеличенная толщина стенок, но и большая масса Чаще используются для помышленных целей
ПЭ 100 SDR 11 Полиэтилен низкого давления, высокая прочность, повышенная химическая стойкость Может использоваться при монтаже канализационных коллекторов, прокладывается в любом типе грунта

Серия трубы и номинальное давление

Следующий параметр, который может быть важен при выборе — серия. Обозначается буквой S, за которой стоят цифры. Отображает способность стенок сопротивляться давлению. Это отношение того давления, которое она может выдержать (определяется в лабораторных условиях) к рабочему. Чем больше цифра, тем прочнее труба.

Номинальное давление ПЭ труб разной плотности с разным SDR

На практике этот показатель редко принимают во внимание, так как он более «лабораторный», чем практический. Намного более важным может оказаться номинальное давление, на которое рассчитаны стенки. Эти данные представлены на фото выше. Давление находится на пересечении столбцов и строк, указано в Атмосферах. Например, для трубы PE 80 SDR 13,6 рабочее давление равно PN10 (10 Атм). Это значит, что при транспортировке сред температурой не более +20°C и давлении не более 10 Атм, срок службы данной трубы — 50 лет.

Нормативные документы

Для стандартизации выпускаемой продукции были разработаны ГОСТы и отраслевые стандарты. Нормативная база по этому виду материалов появилась не так давно — уже в нынешнем тысячелетии — после 2000 года. В маркировке обычно указывается стандарт, которому отвечает данный вид продукции. По названию ГОСТа определяется область применения (из названий ГОСТов), но непрофессионалам проще ориентироваться на наличие полос соответствующего цвета (голубые — для холодной воды, желтые — для газа).

Вот стандарты для России:


Есть стандарты для Украины:

  • ДСТУ Б В.2.7-151:2008 «Трубы полиэтиленовые для подачи холодной воды»
  • ДСТУ Б В.2.5-322007 «Трубы безнапорные из полипропилена, полиэтилена, непластифицируемого поливинилхлорида и фасонные изделия к ним для внешних сетей канализации домов и сооружений и кабельной канализации»
  • ДСТУ Б В.2.7-73-98 «Трубы полиэтиленовые для подачи горючих газов»

При желании все их можно изучить. В большинстве своем они представляют собой таблицы, в которых указан весь сортамент продукции с указанием из параметров.

Пример маркировки ПЭ трубы

Для идентификации на полиэтиленовые трубы нанесена маркировка. Надписи наносятся на каждом метре или около того. Первым указывается название фирмы-производителя, может стоять логотип кампании. Этот знак не обязательный, но является хорошим признаком — предприятие не боится за свой товар.

  • обозначение материала трубы, в данном случае — ПЭ — полиэтилен;
  • плотность полиэтилена — для этого примера 80;
  • потом SDR трубы — 11;
  • следующим стоит наружный диаметр и толщина стенки: 160 мм диаметр трубы, 14,6 мм — толщина стенки;
  • в последней позиции указывается ГОСТ или ДСТУ, которому отвечает данный тип трубы.

Приведенная на фото труба — для газопроводов это подчеркивается трижды — нанесенными желтыми полосами, надписью «газ» в маркировке и наименованием ГОСТа — 50838-2009 — это стандарт, по которому производятся пластиковые трубы для газопроводов.

Полиолефины представляют собой самый распространенный тип полимеров получаемых реакциями полимеризации и сополимеризации непредельных углеводородов (этилена, пропилена, бутилена и других альфа-олефинов). Около 50% производимого в мире этилена используется для получения полиэтилена.

Химическая структура молекулы полиэтилена проста и представляет собою цепочку атомов углерода, к каждому из которых присоединены две молекулы водорода.

Легкий эластичный кристаллизующийся материал с теплостойкостью отдельных марок до 110 0С. Допускает охлаждение до -80 0С. Температура плавления марок: 120-135 0С. Температура стеклования: ок. -20 0С. Дает блестящую поверхность.

Характеризуется хорошей ударной прочностью и большей теплостойкостью по сравнению с LDPE.

Свойства сильно зависят от плотности материала. Увеличение плотности приводит к повышению прочности, жесткости, твердости, химической стойкости. В то же время при увеличении плотности снижается ударопрочность при низких температурах, удлинение при разрыве, проницаемость для газов и паров.

Наблюдается высокая ползучесть при длительном нагружении. Имеет очень высокую химическую стойкость (больше, чем у LDPE). Обладает отличными диэлектрическими характеристиками. Биологически инертен. Легко перерабатывается.


Показатели (23 0С)

Значения для ненаполненных марок

Плотность

0,94-0,97 г/см3

Теплостойкость по Вика (в жидкой среде, 50 0С/ч, 50Н)
Предел текучести при растяжении (50 мм/мин)
Модуль упругости при растяжении (1 мм/мин)
Относительное удлинение при растяжении (50мм/мин)
Ударная вязкость по Шарпи (образец с надрезом)
Твердость при вдавливании шарика (358 Н, 30с)
Удельное поверхностное электрическое сопротивление

10^14-10^15 Ом

Водопоглощение (24 ч, влажность 50%)

(высокой плотности) применяется преимущественно для выпуска тары и упаковки. За рубежом примерно третья часть выпускаемого полимера используется для изготовления контейнеров выдувным формованием (емкости для пищевых продуктов, парфюмерно-косметических товаров, автомобильных и бытовых химикатов, топливных баков и бочек). При этом стоит отметить, что по сравнению с другими областями, опережающими темпами растет использование ПЭНД для производства упаковочных пленок. ПЭ НД находит также применение в производстве труб и деталей трубопроводов, где используются такие достоинства материала как долговечность (срок службы - 50 лет), простота стыковой сварки, дешевизна (в среднем на 30% ниже по сравнению с металлическими трубами).

Легкий эластичный кристаллизующийся материал. Теплостойкость до 118 0С. Имеет большую стойкость к растрескиванию, ударную прочность и теплостойкость, чем полиэтилен низкой плотности (LDPE). Биологически инертен. Легко перерабатывается. Дает меньшее коробление и большую стабильность размеров, чем LDPE.

Характеристики марочного ассортимента
(минимальные и максимальные значения для промышленных марок)

Примеры применения

Упаковка. Контейнеры (в том числе для пищевых продуктов), емкости.

Сэвилен: TУ 6-05-1636-97

Сэвилен - сополимер этилена с винилацетатом - представляет собой высокомолекулярное соединение, относящееся к полиолефинам. Получают его методом, аналогичным методу производства полиэтилена низкой плотности (высокого давления).

Сэвилен превосходит полиэтилен по прозрачности и эластичности при низких температурах, обладает повышенной адгезией к различным материалам.

Свойство сэвилена зависят, главным образом, от содержания винилацетата (5-30 вес. %). С повышением содержания винилацетата кристалличность, разрушающее напряжение при растяжении, твердость, теплостойкость уменьшаются, в то время кок плотность, эластичность, прозрачность, адгезия увеличиваются.

Из сэвилена марок 11104-030, 11306-075 можно изготавливать выдувные изделия, шланги, прокладки, игрушки. Из этих же марок сэвилена получают атмосферостойкие, прозрачные пленки, обладающие, по сравнению с полиэтиленовыми пленками, более низкой температурой плавления.

Высокие адгезионные свойства сэвилена и хорошая совмещаемость с восками дает возможность для использования его в качестве покрытия бумаги и картона при производстве тары. Для этих целей применяется сэвилен с содержанием винилацетата 21-30 вес. % (марки 11507-070, 11708-210, 11808-340).

Важной областью использования сэвилена является приготовление на его основе клеев-расплавов. Клеи-расплавы не содержат растворителей, при комнатной температуре - это твердые вещества. Используются они в расплавленном виде при температуре 120 - 200С.

Для получения клеев-расплавов служит сэвилен, содержащий 21 -30 вес.% винилацетата (марки 11507-070, 11708-210, 11808-340). Клеи-расплавы на основе сэвилена широко применяются в полиграфической, мебельной, обувной и других отраслях промышленности.

Сэвилен хорошо совмещается с различными наполнителями, что обусловливает широкое распространение наполненных продуктов.

Таблица качественных показателей марок сэвилена ТУ 6-05-1636-97

Наименование показателей

Сэвилен 11104-030

Сэвилен 11205-040

Сэвилен 11306-075

Сэвилен 11407-027

Сэвилен 12206-007

Сэвилен 12306-020

Плотность, г/см2

Показатели текучести расплава, г/10 мин, в пределах:

при t=190 0С

Разброс показателя текучести расплава в пределах партии, %
Массовая доля винилацетата, % в пределах
Кол-во включений, шт. не более
Прочность при разрыве, МПа (кгс/см2), не менее
Относительное удлинение при разрыве %, не менее
Адгезионная прочность, Н/мм (кгс/см), не менее
Стойкость к термоокислительному старению, ч, не менее, для рецептур 02, 03, 06
Стойкость к термоокислительному старению, ч, не менее, для рецептур 05,07

не нормируется

не нормируется

не нормируется

Метод перераьотки экструзия, литье экструзия, литье, компаундирование экструзия экструзия, литье экструзия, литье

Комплекс физико-механических, химических и диэлектрических свойств ПЭ определяет его потребительские свойства и позволяет широко применять во многих отраслях промышленности (кабельной, радиотехнической, химической, легкой, медицине и др.).

Структура потребления ПЭ, %

Изоляция электрических проводов . Высокие диэлектрические свойства полиэтилена и его смесей с полиизобутиленом, малая проницаемость для паров воды позволяют широко использовать его для изоляции электропроводов и изготовления кабелей, применяемых в различных средствах связи (телефонной, телеграфной), сигнальных устройствах, системах диспетчерского телеуправления, высокочастотных установках, для обмотки проводов двигателей, работающих в воде, а также для изоляции подводных и коаксиальных кабелей.

Кабель с изоляцией из полиэтилена имеет преимущества по срав¬нению с каучуковой изоляцией. Он легок, более гибок и обладает большей электрической прочностью. Провод, покрытый тонким слоем полиэтилена, может иметь верхний слой из пластифицированного поливинилхлорида, образующего хорошую механическую защиту от повреждений.

В производстве кабелей находит применение ПЭНП, сшитый небольшими количествами (1-3 %) органических перекисей или облученный быстрыми электронами.

Пленки и листы. Пленки и листы могут быть изготовлены из ПЭ любой плотности. При получении тонких и эластичных пленок более широко применяется ПЭНП.

Пленки изготовляются двумя методами: экструзией расплавленного полимера через кольцевую щель с последующим раздувом или экструзией через плоскую щель с последующей вытяжкой. Они выпускаются толщиной 0,03-0,30 мм, шириной, до 1400 мм (в некоторых случаях до 10 м) и длиной до 300 м.

Кроме тонких пленок, из ПЭ изготовляют листы толщиной 1-6 мм и шириной до 1400 мм, Их применяют в качестве футеровочного и электроизоляционного материала и перерабатывают в изделия технического к бытового назначения методом вакуумного формования.

Большая часть продукции из ПЭНП служит упаковочным материалом, конкурируя с другими пленками (целлофановой, поливинилхлоридной, поливинилиденхлоридной, поливинилфторидной, полиэтилентерефталатнсй, из поливинилового спирта и др.), меньшая часть используется для изготовления различных изделий (сумок, мешков, облицовки для ящиков, коробок и других видов тары).

Широко применяются пленки для упаковки замороженного мяса и птицы, при изготовлении аэростатов и баллонов для проведения метеорологических и других исследований верхних слоев атмосферы, защиты от коррозии магистральных нефте- и газопроводов. В сельском хозяйстве прозрачная пленка используется для замены стекла в теплицах и парниках. Черная пленка служит для покрытия почвы в целях задержания тепла при выращивании овощей, плодово-ягодных и бобовых культур, а также для выстилания силосных ям, дна водоемов и каналов. Все больше применяется полиэтиленовая пленка в качестве материала для крыш и стен при сооружении помещений для хранения урожая, сельскохозяйственных машин и другого оборудования.

Из полиэтиленовой пленки изготовляют предметы домашнего обихода: плащи, скатерти, гардины, салфетки, передники, косынки и т. п. Пленка может быть нанесена с одной стороны на различные материалы: бумагу, ткань, целлофан, металлическую фольгу.

Армированная полиэтиленовая пленка отличается большей прочностью, чем обычная пленка такой же толщины. Материал состоит из двух пленок, между которыми находятся армирующие нити из синтетических или природных волокон или редкая стеклянная ткань.

Из очень тонких армированных пленок изготовляют скатерти, а также пленки для теплиц; из более толстых пленок - мешки и упаковочный материал. Армированная пленка, упрочненная редкой стеклянной тканью, может быть применена для изготовления защитной одежды и использована в качестве обкладочного материала для различных емкостей.

На основе пленок из ПЭ могут быть изготовлены липкие (клеящие) пленки или ленты, пригодные для ремонта кабельных линий вы¬сокочастотной связи и для защиты стальных подземных трубопроводов от коррозии. Полиэтиленовые пленки и ленты с липким слоем содержат на одной стороне слой из низкомолекулярного полиизобутилена, иногда в смеси с бутилкаучуком. Выпускаются они толщиной 65-96 мкм, шириной 80-I50 мм.

ПЭНП и ПЭВП применяют и для защиты металлических изделий от коррозии. Защитный слой наносится методами газопламенного и вихревого напыления.

Трубы. Из всех видов пластмасс ПЭ нашел наибольшее применение для изготовления экструзии и центробежного литья труб, характеризующихся легкостью, коррозионной стойкостью, незначительным сопротивлением движению жидкости, простотой монтажа, гибкостью, морозостойкостью, легкостью сварки.

Непрерывным методом выпускаются трубы любой длины с внутренним диаметром 6-300 мм при толщине стенок 1,5-10 мм. Полиэтиленовые трубы небольшого диаметра наматываются на барабаны. Литьем под давлением изготовляют арматуру к трубам, которая включает коленчатые трубы, согнутые под углом 45 и 90 град; тройники, муфты, крестовины, патрубки. Трубы большого диаметра (до 1600 мм) с толщиной стенок до 25 мм получают методом центробежного литья.

Полиэтиленовые трубы вследствие их химической стойкости и эластичности применяются для транспортировки воды, растворов солей и щелочей, кислот, различных жидкостей и газов в химической промышленности, для сооружения внутренней и внешней водопроводной сети, в ирригационных системах и дождевальных установках.

Трубы из ПЭНП могут работать при температурах до 60 0С, а из ПЭВП - до 100 0С. Такие трубы не разрушаются при низких температурах (до – 60 0С) и при замерзании воды; они не подвержены почвенной коррозии.

Формование и литьевые изделия . Из полиэтиленовых листов, полученных экструзией или прессованием, можно изготовить различные изделия штампованием, изгибанием по шаблону или вакуумформованием. Крупногабаритные изделия (лодки, ванны, баки и т. п.) также могут быть изготовлены из порошка полиэтилена путем его спекания на нагретой форме. Отдельные части изделий могут быть сварены при помощи струи горячего воздуха, нагретого до 250 0С.

Формованием и сваркой можно изготовить вентили, колпаки, конейнеры, части вентиляторов и насосов для кислот, мешалки, фильтры, различные емкости, ведра и т. п.

Одним из основных методов переработки ПЭ в изделия является метод литья под давлением. Большое распространение в фармацевтической и химической промышленности получили бутылки из полиэтиле¬на объемом от 25 до 5000 мл, а также посуда, игрушки, электротехнические изделия, решетчатые корзины и ящики.

Выбор того или иного технологического процесса определяется в первую очередь необходимостью получения марочного ассортимента с определенным комплексом свойств. Суспензионный метод целесообразен для производства полиэтилена трубных марок и марок полиэтилена, предназначенного для переработки экструзионным методом, а также для производства высокомолекулярного полиэтилена. С привлечением растворных технологий получают ЛПЭНД, для высококачественных упаковочных пленок, марки полиэтилена для изготовления изде¬лий методами литья и ротационного формования. Газофазным методом производят марочный ассортимент полиэтилена, предназначенный для изготовления товаров народного потребления.

Подробности Создано: 02.02.2018 17:17

История знает множество случаев, когда востребованные в той или иной отрасли материалы были получены в качестве побочного продукта при проведении научных опытов.

Ярким тому примером могут послужить анилиновые красители, которые совершили настоящий переворот в легкой промышленности. Аналогичная история случилась и с .

История открытия

Впервые материал был случайно получен в 1899 году химиком Гансом фон Пехманном вследствие разогрева диамезотана. Химик обратил внимание на плотный и напоминающий воск материал, осевший на дно пробирки, однако эта случайность оказалось позабытой, и лишь через три десятилетия побочный продукт был вновь получен М. Перрином и Дж. Паттоном. В 1936 году был получен патент на низкоплотный полиэтилен, а уже через пару лет стартовало массовое производство.

Особенности

Полученный материал представляет собой белоцветный и твердый полимер, относящийся к органическим соединениям. Ключевым сырьем для получения полиэтилена служит этилен, от которого и пошло название. Данный газ полимеризуется при низком и высоком давлении, в результате чего получаются сырьевые гранулы для дальнейшей эксплуатации. В некоторых случаях материал производится в порошковом виде.

Существует множество разновидностей данного материала, каждая из которых обладает своими особенностями и сферой применения. Полиэтилен может отличаться по степени давления в процессе производства, плотности и многим другим аспектам. В гранулированные вариации в процессе производства могут добавляться разнообразные красители, позволяющие получить тот или иной цвет.

Свойства

Материал устойчив к влаге, к множеству растворителей, органическим и неорганическим кислотам, а также не реагирует на соль. В процессе горения выделяется парафиновый запах, присутствует голубоватое свечение и слабый огонь. Материал разлагается при контакте с азотной кислотой, фтором и хлором. В процессе старения полиэтилена происходит образование поперечных связей между молекулярными цепями, из-за чего он становится хрупким.

Производство линейного полиэтилена

Метод производства варьируется в зависимости от типа материала. В случае линейной вариации полиэтилена температура нагрева должна достигать отметки 120 °С, давление в пределах 4 Мпа, а катализатором выступает смесь металлоорганического соединения с хлоридом титана. Процесс производства включает в себя выпадение материала в виде хлопьев, которые затем отделяют от раствора с дальнейшим процессом грануляции.

Производство полиэтилена низкого давления

ПНП может производиться тремя способа. В основном применяется суспензионная полимеризация, требующая постоянного перемешивания сырья и катализатора для запуска процесса. Второй способ - это полимеризация в растворе с определенной температурой и катализатором, которому свойственно вступать в реакцию, а потому метод не слишком эффективен. Последний из способов представляет собой газофазную полимеризацию, которая представляет собой процесс смешивания сырьевых газовых фаз под воздействием диффузии.

Производство полиэтилена высокого давления

Такая разновидность может быть получена при температурном режиме в диапазоне от 200 до 250°С. В качестве катализатора может применяться органический пероксид. Давление должно быть в диапазоне 150-300 МПа. В первой фазе масса находится в жидком состоянии, после чего отправляется к сепаратору, а затем к гранулятору.