Гидравлика для отопления двухтрубной системы excel. Гидравлический расчет системы отопления: просто о сложном. Целью гидравлического расчёта является

Что представляет собой гидравлический расчет системы отопления? Какие величины нуждаются в подсчетах? Наконец, главное: как рассчитать их, не располагая точными значениями гидравлического сопротивления всех участков, отопительных приборов и элементов запорной арматуры? Давайте разбираться.

Что рассчитываем

Для любой системы отопления важнейший параметр — ее тепловая мощность.

Она определяется:

  • Температурой теплоносителя.
  • Тепловой мощностью отопительных приборов.

Заметьте: в документации последний параметр указывается для фиксированной дельты температур между температурой теплоносителя и воздухом в отапливаемом помещении в 70 С.
Уменьшение дельты температур вдвое приведет к двукратному уменьшению тепловой мощности.

Методы вычисления тепловой мощности мы пока оставим за кадром: им посвящено достаточно тематических материалов.

Однако для того, чтобы обеспечить перенос тепла от трассы или котла к отопительным приборам, важны еще два параметра:

  1. Внутреннее сечение трубопровода, привязанное к его диаметру.

  1. Скорость потока в этом трубопроводе.

В автономной отопительной системе с принудительной циркуляцией важно знать еще пару значений:

  1. Гидравлическое сопротивление контура. Расчет гидравлического сопротивления системы отопления позволит определить требования к напору, создаваемому циркуляционным насосом.
  2. Расход теплоносителя через контур, определяющийся производительностью при соответствующем напоре.

Проблемы

Как говорят в Одессе, «их есть».

Для того, чтобы вычислить полное гидравлическое сопротивление контура, нужно учесть:

  • Сопротивление прямых участков труб . Оно определяется их материалом, внутренним диаметром, скоростью потока и степенью шероховатости стенок.

  • Сопротивление каждого поворота и перехода диаметра .
  • Сопротивление каждого элемента запорной арматуры .
  • Сопротивление всех отопительных приборов .
  • Сопротивление теплообменника котла .

Собрать воедино все необходимые данные явно станет проблемой даже в самой простой схеме.

Что делать?

Формулы

К счастью, для автономной отопительной системы гидравлический расчет отопления может быть выполнен с приемлемой точностью и без углубления в дебри.

Скорость потока

С нижней стороны ее ограничивает рост перепада температур между подачей и обраткой, а заодно и повышенная вероятность завоздушивания. Быстрый поток вытеснит воздух из перемычек к автоматическому воздухоотводчику; медленный же с этой задачей не справится.

С другой стороны, слишком быстрый поток неизбежно породит гидравлические шумы. Элементы запорной арматуры и повороты розлива станут источником раздражающего гула.

Для отопления диапазон приемлемой скорости потока берется от 0,6 до 1,5 м/с; при этом подсчет прочих параметров обычно выполняется для значения 1 м/с.

Диаметр

Его при известной тепловой мощности проще всего подобрать по таблице.

Внутренний диаметр трубы, мм Тепловой поток, Вт при Dt = 20С
Скорость 0,6 м/с Скорость 0,8 м/с Скорость 1 м/с
8 2453 3270 4088
10 3832 5109 6387
12 5518 7358 9197
15 8622 11496 14370
20 15328 20438 25547
25 23950 31934 39917
32 39240 52320 65401
40 61313 81751 102188
50 95802 127735 168669

Напор

В упрощенном варианте он рассчитывается по формуле H=(R*I*Z)/10000.

В ней:

  • H — искомое значение напора в метрах.
  • I — потеря напора в трубе, Па/м. Для прямого участка трубы расчетного диаметра он принимает значение в диапазоне 100-150.
  • Z — дополнительный компенсационный коэффициент, который зависит от наличия в контуре дополнительного оборудования.

На фото — смесительный узел для отопления.

Если в системе присутствует несколько элементов из списка, соответствующие коэффициенты перемножаются. Так, для системы с шаровыми вентилями, и термостатом, регулирующим проходимость розлива, Z=1,3*1,7=2,21.

Производительность

Инструкция по расчету своими руками производительности насоса тоже не отличается сложностью.

Производительность вычисляется по формуле G=Q/(1,163*Dt), в которой:

  • G — производительность в м3/час.
  • Q -тепловая мощность контура в киловаттах.
  • Dt — разница температур между подающим и обратным трубопроводами.

Пример

Давайте приведем пример гидравлического расчета системы отопления для следующих условий:

  • Дельта температур между подающим и обратным трубопроводом равна стандартным 20 градусам.
  • Тепловая мощность котла — 16 КВт.
  • Общая длина розлива однотрубной ленинградки — 50 метров. Отопительные приборы подключены параллельно розливу. Термостаты, разрывающие розлив, и вторичные контуры со смесителями отсутствуют.

Итак, приступим.

Минимальный внутренний диаметр согласно приведенной выше таблице равен 20 миллиметрам при скорости потока не менее 0,8 м/с.

Полезно: современные циркуляционные насосы часто имеют ступенчатую или, что удобнее, плавную регулировку производительности.
В последнем случае цена устройства несколько выше.

Оптимальный напор для нашего случая будет равен (50*150+1,3)/10000=0,975 м. Собственно, в большинстве случаев параметр не нуждается в расчете. Перепад в системе отопления многоквартирного дома, обеспечивающий в ней циркуляцию — всего 2 метра; именно таково минимальное значение напора абсолютного большинства насосов с мокрым ротором.

Производительность вычисляется как G=16/(1,163*20)=0,69 м3/час.

Заключение

Надеемся, что приведенные методики расчетов помогут читателю вычислить параметры собственной отопительной системы, не забираясь в дебри сложных формул и справочных данных. Как всегда, прикрепленное видео предложит дополнительную информацию. Успехов!

Централизованный тип постепенно уступает место автономной системе отопления. Многие принимают решение обогревать помещения собственными силами, желая создать идеальное сочетание экономичности, тепла и комфорта. Именно поэтому особую актуальность приобретает гидравлический расчет системы отопления.

На начальном этапе предстоят финансовые траты. Однако новейшее отопительное оборудование обладает инновационным подходом к процессу регулирования подачи тепла по сравнению со старым, поэтому вложенные деньги быстро окупаются. Но такую гармонию могут обеспечить лишь системы, созданные по всем правилам. Они смогут профессионально преодолеть возникающее гидравлическое сопротивление.

Для чего делается расчет

Вычисления производят в первую очередь для того, чтобы определить такие характеристики циркуляционного насоса, как производительность и напор, которые позволят системе отопления работать с наибольшей эффективностью.

Конечно, какую-то циркуляцию в контуре создаст любой насос, даже самый маломощный, но насколько экономичной будет такая схема? Часто бывает так, что и котел исправно работает и радиаторов в доме достаточно, но они не греют из-за слабой циркуляции в системе.

Чтобы контуры отопления работали в полную силу, необходимо, чтобы насос преодолел гидравлическое сопротивление элементов системы потоку воды в трубах, а также потери давления. Но и насос большей мощности, чем нужно, также приведет к нежелательным эффектам. Кроме повышенного расхода электроэнергии, превышение давления плохо скажется на долговечности соединений, а увеличение скорости продвижения теплоносителя приведет к возникновению шумов.


Правильно рассчитанное гидравлическое сопротивление и качественная регулирующая арматура – наиболее эффективное сочетание.

Соблюдение ключевых условий обеспечивают следующие факторы:

  • снабжение отопительных приборов должно осуществляться в достаточном объеме для идеального баланса в помещении при температурных колебаниях воздуха снаружи и в жилище;
  • минимизация затрат на эксплуатацию, чтобы преодолеть системное гидравлическое сопротивление;
  • снижение капитальных затрат во время прокладки отопления.

Что учитывается в расчете?

Перед тем как начинать вычисления, следует выполнить ряд графиче

ских действий (часто для этого применяется специальная программа). Гидравлический расчет предполагает определение показателя баланса тепла помещения, в котором происходит отопительный процесс.

Для расчета системы рассматривается самый протяженный контур отопления, включающий наибольшее количество приборов, фитингов, регулирующей и запорной арматуры и наибольший перепад давления по высоте. В расчете участвуют такие величины:

  • материал трубопроводов;
  • суммарная длина всех участков трубы;
  • диаметр трубопровода;
  • изгибы трубопровода;
  • сопротивление фитингов, арматуры и отопительных приборов;
  • наличие байпасов;
  • текучесть теплоносителя.

Чтобы учесть все эти параметры существуют специализированные компьютерные программы, как пример - «НТП Трубопровод», «Oventrop CO», HERZ С.О. версии 3.5. или множество их аналогов, облегчающие специалистам производство расчетов.

Сделать верные расчеты в части преодоления сопротивления – это самый трудоемкий, но нео

бходимый шаг при проектировании отопительных систем водяного типа.

Выбор радиаторов и длины участков трубопровода

Необходимо определиться с видом устройств для отопления и проставить места их расположение на плане помещения. Далее должно быть принято решение об итоговой конфигурации отопительной системы, вида трубопровода (однотрубный или двухтрубный), арматуры для запора и регулирования (клапана, регуляторы, вентили, датчики давления, расхода и температуры).


Затем на вычерченной схеме указывается номер тепловых нагрузок и точная длина участков, для которых производится расчет. В заключении определяется «циркулирующее кольцо». Оно представляет собой контур замкнутого вида, который включает в себя все последовательные трубопроводные участки, на которых ожидается повышенный расход носителя тепла на расстоянии от источника, излучающего теплоэнергию, до самого дальнего прибора отопления (при двухконтурной системе) или до приборной ветки (при однотрубной системе) и назад к отопительному механизму.

Нюансы

При гидравлическом расчете с помощью компьютера excel – не единственная, хоть и наиболее простая. Для данного вида подсчетов разработаны специализированные программы, с которыми работать значительно проще.

В роли расчетного трубопровода обычно выступает участок, имеющий неизменный расход носителя тепла и постоянный диаметр. Так будет проще получить правильные данные. Он определяется по тепловому балансу помещения.


Нумерация участков должна происходить от теплового источника. Чтобы обозначить узловые точки на трубопроводе, который осуществляет подачу, в местах ответвлений применяют буквы алфавита. На магистралях сборного типа в соответствующих узлах их обозначают штрихами (пример хорошо это иллюстрирует).

Узловые точки на ответвлениях приборных веток обозначаются арабскими цифрами. Каждая соответствует номеру этажа, если применяется система горизонтального типа, или номеру ветки-стояка с приборами, если речь идет о вертикальной системе. В номер всегда входят две цифры – начало и конец участка. Длина трубопроводных участков определяется по плану, который вычерчивается в масштабе. Точность составляет 0,1 м.

Расчет однотрубной системы отопления рекомендуется проводить при одинаковых (постоянных) или различных (переменных) перепадах температуры воды в стояках методом характеристик сопротивления. При этом следует применять верхнюю разводку, при которой обеспечивается движение воды к отопительному прибору «сверху-вниз».

Экономичность теплового комфорта в доме обеспечивают расчет гидравлики, её качественный монтаж и правильная эксплуатация. Главные компоненты отопительной системы — источник тепла (котёл), тепловая магистраль (трубы) и приборы теплоотдачи (радиаторы). Для эффективного теплоснабжения необходимо сохранить первоначальные параметры системы при любых нагрузках независимо от времени года.

Перед началом гидравлических расчётов выполняют:

  • Сбор и обработку информации по объекту с целью:
    • определения количества требуемого тепла;
    • выбора схемы отопления.
  • Тепловой расчёт системы отопления с обоснованием:
    • объёмов тепловой энергии;
    • нагрузок;
    • теплопотерь.

Если водяное отопление признаётся оптимальным вариантом, выполняется гидравлический расчёт.

Для расчёта гидравлики с помощью программ требуется знакомство с теорией и законами сопротивления. Если приведенные ниже формулы покажутся вам сложными для понимания, можно выбрать параметры, которые мы предлагаем в каждой из программ.

Расчёты проводились в программе Excel. Готовый результат можно посмотреть в конце инструкции.

В этой статье:

Что такое гидравлический расчёт

Это третий этап в процессе создания тепловой сети. Он представляет собой систему вычислений, позволяющих определить:

  • диаметр и пропускную способность труб;
  • местные потери давления на участках;
  • требования гидравлической увязки;
  • общесистемные потери давления;
  • оптимальный расход воды.

Согласно полученным данным осуществляют подбор насосов .

Для сезонного жилья, при отсутствии в нём электричества, подойдёт система отопления с естественной циркуляцией теплоносителя ().

Основная цель гидравлического расчёта — обеспечить совпадение расчётных расходов по элементам цепи с фактическими (эксплуатационными) расходами. Количество теплоносителя, поступающего в радиаторы, должно создать тепловой баланс внутри дома с учётом наружных температур и тех, что заданы пользователем для каждого помещения согласно его функциональному назначению (подвал +5, спальня +18 и т.д.).

Комплексные задачи — минимизация расходов :

  1. капитальных – монтаж труб оптимального диаметра и качества;
  2. эксплуатационных:
    • зависимость энергозатрат от гидравлического сопротивления системы;
    • стабильность и надёжность;
    • бесшумность.

Замена централизованного режима теплоснабжения индивидуальным упрощает методику вычислений

Для автономного режима применимы 4 метода гидравлического расчёта системы отопления:

  1. по удельным потерям (стандартный расчёт диаметра труб);
  2. по длинам, приведённым к одному эквиваленту;
  3. по характеристикам проводимости и сопротивления;
  4. сопоставление динамических давлений.

Два первых метода используются при неизменном перепаде температуры в сети.

Два последних помогут распределить горячую воду по кольцам системы, если перепад температуры в сети перестанет соответствовать перепаду в стояках/ответвлениях.

Расчет гидравлики системы отопления

Нам потребуются данные теплового расчёта помещений и аксонометрической схемы.

Вынесите данные в эту таблицу:

Шаг 1: считаем диаметр труб

В качестве исходных данных используются экономически обоснованные результаты теплового расчёта:

1а. Оптимальная разница между горячим (tг) и охлаждённым(tо) теплоносителем для двухтрубной системы – 20º

  • Δtco=tг- tо=90º-70º=20ºС

1б. Расход теплоносителя G, кг/час — для системы.

2. Оптимальная скорость движения теплоносителя – ν 0,3-0,7 м/с.

Чем меньше внутренний диаметр труб — тем выше скорость. Достигая отметки 0,6 м/с, движение воды начинает сопровождаться шумом в системе.

3. Расчётная скорость теплопотока – Q, Вт.

Выражает количество тепла (W, Дж), переданного в секунду (единицу времени τ):

Формула для расчёта скорости теплопотока

4. Расчетная плотность воды: ρ = 971,8 кг/м3 при tср = 80 °С

5. Параметры участков:

Участок Длина участка, м Число приборов N, шт
1 - 2 1.78 1
2 - 3 2.60 1
3 - 4 2.80 2
4 - 5 2.80 2
5 - 6 2.80 4
6 - 7 2.80
7 - 8 2.20
8 - 9 6.10 1
9 - 10 0.5 1
10 - 11 0.5 1
11 - 12 0.2 1
12 - 13 0.1 1
13 - 14 0.3 1
14 - 15 1.00 1

Для определения внутреннего диаметра по каждому участку удобно пользоваться таблицей.

Расшифровка сокращений:

  • зависимость скорости движения воды — ν, с
  • теплового потока — Q, Вт
  • расхода воды G, кг/час от внутреннего диаметра труб
Ø 8 Ø 10 Ø 12 Ø 15 Ø 20 Ø 25 Ø 50
ν Q G v Q G v Q G v Q G v Q G v Q G v Q G
0.3 1226 53 0.3 1916 82 0.3 2759 119 0.3 4311 185 0.3 7664 330 0.3 11975 515 0.3 47901 2060
0.4 1635 70 0.4 2555 110 0.4 3679 158 0.4 5748 247 0.4 10219 439 0.4 15967 687 0.4 63968 2746
0.5 2044 88 0.5 3193 137 0.5 4598 198 0.5 7185 309 0.5 12774 549 0.5 19959 858 0.5 79835 3433
0.6 2453 105 0.6 3832 165 0.6 5518 237 0.6 8622 371 0.6 15328 659 0.6 23950 1030 0.6 95802 4120
0.7 2861 123 0.7 4471 192 0.7 6438 277 0.7 10059 433 0.7 17883 769 0.7 27942 1207 0.7 111768 4806

Пример

Задача : подобрать диаметр трубы для отопления гостиной площадью 18 м², высота потолка 2,7 м.

Данные проекта:

  • циркуляция — принудительная (насос).

Среднестатистические данные:

  • расход мощности – 1 кВт на 30 м³
  • запас тепловой мощности – 20%

Расчёт :

  • объём помещения: 18 * 2,7 = 48,6 м³
  • расход мощности: 48,6 / 30 = 1,62 кВт
  • запас на случай морозов: 1,62 * 20% = 0,324 кВт
  • итоговая мощность: 1,62 + 0,324 = 1,944 кВт

Находим в таблице наиболее близкое значения Q:

Получаем интервал внутреннего диаметра: 8-10 мм.
Участок: 3-4.
Длина участка: 2.8 метров.

Шаг 2: вычисление местных сопротивлений

Чтобы определиться с материалом труб, необходимо сравнить показатели их гидравлического сопротивления на всех участках отопительной системы.

Факторы возникновения сопротивления:

Трубы для отопления

  • в самой трубе:
    • шероховатость;
    • место сужения/расширения диаметра;
    • поворот;
    • протяжённость.
  • в соединениях:
    • тройник;
    • шаровой кран;
    • приборы балансировки.

Расчетным участком является труба постоянного диаметра с неизменным расходом воды, соответствующим проектному тепловому балансу помещения.

Для определения потерь берутся данные с учётом сопротивления в регулирующей арматуре:

  1. длина трубы на расчётном участке/l,м;
  2. диаметр трубы расчётного участка/d,мм;
  3. принятая скорость теплоносителя/u, м/с;
  4. данные регулирующей арматуры от производителя;
  5. справочные данные:
    • коэффициент трения/λ;
    • потери на трение/∆Рl, Па;
    • расчетная плотность жидкости/ρ = 971,8 кг/м3;
  6. технические характеристики изделия:
    • эквивалентная шероховатость трубы/kэ мм;
    • толщина стенки трубы/dн×δ, мм.

Для материалов со сходными значениями kэ производители предоставляют значение удельных потерь давления R, Па/м по всему сортаменту труб.

Чтобы самостоятельно определить удельные потери на трение/R, Па/м, достаточно знать наружный d трубы, толщину стенки/dн×δ, мм и скорость подачи воды/W, м/с (или расход воды/G, кг/ч).

Для поиска гидросопротивления/ΔP в одном участке сети подставляем данные в формулу Дарси-Вейсбаха:

Для стальных и полимерных труб (из , полиэтилена, стекловолокна и т.д.) коэффициент трения/ λ наиболее точно вычисляется по формуле Альтшуля:

Re — число Рейнольдса, находится по упрощённой формуле (Re=v*d/ν) или с помощью онлайн-калькулятора:

Шаг 3: гидравлическая увязка

Для балансировки перепадов давления понадобится запорная и регулирующая арматура.

Исходные данные:

  • проектная нагрузка (массовый расход теплоносителя — воды или );
  • данные производителей труб по удельному динамическому сопротивлению/А, Па/(кг/ч)²;
  • технические характеристики арматуры.
  • количество местных сопротивлений на участке.

Задача : выровнять гидравлические потери в сети.

В гидравлическом расчёте для каждого клапана задаются установочные характеристики (крепление, перепад давления, пропускная способность). По характеристикам сопротивления определяют коэффициенты затекания в каждый стояк и далее — в каждый прибор.

Фрагмент заводских характеристик поворотного затвора

Выберем для вычислений метод характеристик сопротивления S,Па/(кг/ч)².

Потери давления/∆P, Па прямо пропорциональны квадрату расхода воды по участку/G, кг/ч:

В физическом смысле S — это потери давления на 1 кг/ч теплоносителя:

где:

  • ξпр — приведенный коэффициент для местных сопротивлений участка;
  • А — динамическое удельное давление, Па/(кг/ч)².

Удельным считается динамическое давление, возникающее при массовом расходе 1 кг/ч теплоносителя в трубе заданного диаметра (информация предоставляется производителем).

Σξ — слагаемое коэффициентов по местным сопротивлениям в участке.

Приведенный коэффициент:

Он суммирует все местные сопротивления:

С величиной:

которая соответствует коэффициенту местного сопротивления с учётом потерь от гидравлического трения.

Шаг 4: определение потерь

Гидравлическое сопротивление в главном циркуляционном кольце представлено суммой потерь его элементов:

  • первичного контура/ΔPIк;
  • местных систем/ΔPм;
  • теплогенератора/ΔPтг;
  • теплообменника/ΔPто.

Сумма величин даёт нам гидравлическое сопротивление системы/ΔPсо:

Обзор программ

Для удобства расчётов применяются любительские и профессиональные программы вычисления гидравлики.

Самой популярной является Excel.

Можно воспользоваться онлайн-расчётом в Excel Online, CombiMix 1.0, или онлайн-калькулятором гидравлического расчёта. Стационарную программу подбирают с учётом требований проекта.

Главная трудность в работе с такими программами — незнание основ гидравлики. В некоторых из них отсутствуют расшифровки формул, не рассматриваются особенности разветвления трубопроводов и вычисления сопротивлений в сложных цепях.

Особенности программ:

  • HERZ C.O. 3.5 – производит расчёт по методу удельных линейных потерь давления.
  • DanfossCO и OvertopCO – умеют считать системы с естественной циркуляцией.
  • «Поток» (Potok) — позволяет применять метод расчёта с переменным (скользящим) перепадом температур по стоякам.

Следует уточнять параметры ввода данных по температуре — по Кельвину/по Цельсию.

Как работать в EXCEL

Использование таблиц Excel очень удобно, поскольку результаты гидравлического расчёта всегда сводятся к табличной форме. Достаточно определить последовательность действий и подготовить точные формулы.

Ввод исходных данных

Выбирается ячейка и вводится величина. Вся остальная информация просто принимается к сведению.

Ячейка Значение, обозначение, единица выражения
D4 45,000 Расход воды G в т/час
D5 95,0 Температура на входе tвх в °C
D6 70,0 Температура на выходе tвых в °C
D7 100,0 Внутренний диаметр d, мм
D8 100,000 Длина, L в м
D9 1,000 Эквивалентная шероховатость труб ∆ в мм
D10 1,89 Сумма коэф. местных сопротивлений - Σ(ξ)

Пояснения:
  • значение в D9 берётся из справочника;
  • значение в D10 характеризует сопротивления в местах сварных швов.

Формулы и алгоритмы

Выбираем ячейки и вводим алгоритм, а также формулы теоретической гидравлики.

Ячейка Алгоритм Формула Значение результата
D12 !ERROR! D5 does not contain a number or expression tср=(tвх+tвых)/2 82,5 Средняя температура воды tср в °C
D13 n=0,0178/(1+0,0337*tср+0,000221*tср2) 0,003368 Кинематический коэф. вязкости воды - n, cм2/с при tср
D14 !ERROR! D12 does not contain a number or expression ρ=(-0,003*tср2-0,1511*tср+1003, 1)/1000 0,970 Средняя плотность воды ρ,т/м3 при tср
D15 G’=G*1000/(ρ*60) 773,024 Расход воды G’, л/мин
D16 !ERROR! D4 does not contain a number or expression v=4*G:(ρ*π*(d:1000)2*3600) 1,640 Скорость воды v, м/с
D17 !ERROR! D16 does not contain a number or expression Re=v*d*10/n 487001,4 Число Рейнольдса Re
D18 !ERROR! Cell D17 does not exist λ=64/Re при Re≤2320
λ=0,0000147*Re при 2320≤Re≤4000
λ=0,11*(68/Re+∆/d)0,25 при Re≥4000
0,035 Коэффициент гидравлического трения λ
D19 !ERROR! Cell D18 does not exist R=λ*v2*ρ*100/(2*9,81*d) 0,004645 Удельные потери давления на трение R, кг/(см2*м)
D20 !ERROR! Cell D19 does not exist dPтр=R*L 0,464485 Потери давления на трение dPтр, кг/см2
D21 dPтр=dPтр*9,81*10000 45565,9 и Па соответственно
D20
D22 !ERROR! D10 does not contain a number or expression dPмс=Σ(ξ)*v2*ρ/(2*9,81*10) 0,025150 Потери давления в местных сопротивлениях dPмс в кг/см2
D23 !ERROR! Cell D22 does not exist dPтр=dPмс*9,81*10000 2467,2 и Па соответственно D22
D24 !ERROR! Cell D20 does not exist dP=dPтр+dPмс 0,489634 Расчетные потери давления dP, кг/см2
D25 !ERROR! Cell D24 does not exist dP=dP*9,81*10000 48033,1 и Па соответственно D24
D26 !ERROR! Cell D25 does not exist S=dP/G2 23,720 Характеристика сопротивления S, Па/(т/ч)2

Пояснения:
  • значение D15 пересчитывается в литрах, так легче воспринимать величину расхода;
  • ячейка D16 — добавляем форматирование по условию: «Если v не попадает в диапазон 0,25…1,5 м/с, то фон ячейки красный/шрифт белый».

Для трубопроводов с перепадом высот входа и выхода к результатам добавляется статическое давление: 1 кг/см2 на 10 м.

Оформление результатов

  • Светло-бирюзовые ячейки содержат исходные данные – их можно менять.
  • Бледно-зелёные ячейка — вводимые константы или данные, мало подверженные изменениям.
  • Жёлтые ячейки — вспомогательные предварительные расчёты.
  • Светло-жёлтые ячейки — результаты расчётов.
  • Шрифты:
    • синий — исходные данные;
    • чёрный — промежуточные/неглавные результаты;
    • красный — главные и окончательные результаты гидравлического расчёта.

Результаты в таблице Эксель

Пример от Александра Воробьёва

Пример несложного гидравлического расчёта в программе Excel для горизонтального участка трубопровода.

Исходные данные:

  • длина трубы100 метров;
  • ø108 мм;
  • толщина стенки 4 мм.

Таблица результатов расчёта местных сопротивлений

Усложняя шаг за шагом расчёты в программе Excel, вы лучше осваиваете теорию и частично экономите на проектных работах. Благодаря грамотному подходу, ваша система отопления станет оптимальной по затратам и теплоотдаче.

Обеспечить бесперебойную работу отопительной системы помогут правильно выполненные гидравлические расчеты еще на стадии ее проектирования. Они позволят узнать точные расходы по каждому из элементов цепи, а в идеале помогут минимизировать расходы на ремонт труб, их эксплуатацию и энергозатраты. При этом отопительный контур должен стабильно и бесшумно работать.

Зачем нужен гидравлический расчет?

При гидравлическом расчете находятся решения следующих важных задач:
  • Вычислить потери напора на определенных участках отопительного контура.
  • Определить оптимальный диаметр труб, используемых для прокладки отопления на основании рекомендованной скорости движения теплоносителя.
  • Рассчитать теплопотери и значение минимального давления в системе.
  • Правильно выполнить увязку параллельных гидравлических ветвей и вмонтированных в них приборов. Она будет проводиться с использованием регулирующей арматуры.
Исходя из важности данных задач, необходимо уделить расчетам максимальное внимание.

Алгоритм проведения расчетов

Чтобы провести полный гидравлический расчет системы, вначале нужно пройти несколько этапов:
  • Установить тепловой баланс для каждого конкретного помещения.
  • Выбрать и установить отопительные приборы по всему периметру здания или только в той его части, где расположены отапливаемые помещения.
  • Проработать окончательную аксонометрическую схему с указанием длин тепловых расчетных участков и нагрузок на отопительную магистраль.
  • Установить замкнутый контур системы, который будет заключительным звеном последовательно расположенных участков трубопровода. В двухтрубной системе они идут от источника тепла к самому отдаленному отопительному прибору, а в однотрубной – к приборной ветке-стояку.
  • Принять окончательные решения по месту установки всех источников тепла, трубопроводов, запорной и регулирующей арматуры.
После выполнения гидравлического расчета производится вычисление:
  • потерь давления на определенных участках теплосети;
  • диаметра трубы и пропускной способности;
  • потери давления в общей системе;
  • оптимального расхода теплоносителя.
По их результатам можно подобрать нужный насос.

Гидравлический расчет трубы

Эффективность отопительной системы во многом зависит от правильности выбранного диаметра труб, при этом можно ориентироваться на приведенные ниже показатели.

Для металлопластиковых труб:

  • D16 мм - пределы мощности варьируются от 2,8 до 4,5 кВт;
  • D20 мм – значения могут быть от 5 до 8 кВт;
  • D26 мм – от 8 до 13 кВт;
  • D32 мм – 13-18 кВт.
Для полипропиленовых труб:
  • D20 мм – значение мощности составляет от 4 до 7 кВт;
  • D25 мм – от 6 до 11 кВт;
  • D32 мм – от 10 до 18 кВт;
  • D40 мм – пределы варьируются от 16 до 28 кВт.


Нумерация расчетных участков трубопровода начинается от источника тепла. Узловые точки, расположенные в местах трубопровода, обозначаются заглавными буквами, но на сборных трубопроводах их указывают со штрихом. На распределительных приборных ветках такие узлы обозначаются арабскими цифрами. Длины расчетных трубопроводов определяются по планам отопления, выполненным в масштабе. Они идут с точностью в 0,1 метр.

Расчет расхода теплоносителя

Задействованный объем теплоносителя, который имеется в радиаторах и трубах, должен обеспечивать нормальную температуру внутри дома, невзирая на то, какая погода будет за его стенами.

Она вычисляется по формуле:

M = Q/Cp x Р delta t , где

  • Q – общая мощность отопительной системы, кВт;
  • Cp – показатель удельной теплоемкости воды, ее обычно принимают равной 4,19 кДж/(кг «умножить на» градус по Цельсию);
  • Р delta t – температурная разница на входе и выходе системы, для расчета которой берется «обратка» и подача котла.
По приведенной формуле можно рассчитать расход жидкости в системе на любом участке трубопровода. Разбивание трубы на участки для вычислений происходит между тройниками или до редукции.

Чтобы получить точное значение, следует просчитать по мощности все радиаторы, к которым поставляется теплоноситель. Расчеты проводятся для труб перед каждой батареей.

Гидравлический расчет скорости теплоносителя

Важный показатель, который также рассчитывается на всех участках трубы до момента подключения к радиатору. Скорость движения жидкости вычисляется по формуле:

V = m/p x f , где

  • m – потер теплоносителя на определенном участке трубы, кг/с;
  • p – плотность воды, кг/куб. м (она берется, как 1000 кг/куб. м);
  • f – площадь трубы в поперечном сечении, кв. м.
Последнее значение находится по формуле:

f = Пi x r2 , где

  • r2 – внутренний диаметр трубы, деленный на 2;
  • Пi – математическая постоянная равная 3,14.
Теплоноситель, протекая по замкнутому контуру, преодолевает определенное гидравлическое сопротивление, чем оно больше, тем мощнее нужно покупать насос. Так, без его расчета невозможно правильно выбрать насос. Так, без его расчета невозможно правильно выбрать насос.

Расчет местных сопротивлений

Они приходятся на места соединения труб с фитингами, запорной арматурой или отопительным оборудованием. Потери напора в этом случае рассчитывается по формуле:

delta р м. с. = Summa Y x V/2 x p , где

  • delta p м. с. – потери напора на местных сопротивлениях, Па;
  • Summa Y – сумма коэффициентов всех местных сопротивлений на участке (для каждого отдельного фитинга производитель указывает свой коэффициент);
  • V – скорость прохождения теплоносителя по трубам, м/с;
  • p – плотность жидкости, циркулирующей в отопительной системе, кг/куб. м.

Вычисление потерь давления в контуре

При вычислениях учитывается и «обратка», и подача. Формула выглядит следующим образом:

delta P р = R x L , где

  • delta P p – расход давления в системе, Па;
  • R – удельный расход на трение во внутренней части трубы, Па/м (его значение указывается производителем);
  • L – длина расчетного отрезка трубопровода, м.
После всех вычислений нужно просуммировать сопротивление всех участков трубопровода и провести сравнение с контрольными значениями. Чтобы выбранный насос смог обеспечить теплом все радиаторы нужно, чтобы снижение давления на самом длинном участке трубопровода не превышала 20 тыс. Па.

Значения скорости теплоносителя должны находиться в пределах от 0,25 до 1,5 м/с. Если этот показатель будет выше, в трубах будет слышаться шум, а если оно упадет ниже минимального значения, то возрастет риск завоздушивания системы.

Проведение гидравлических расчетов в Excel

Существует несколько профессиональных и любительских программ, которые после введения формул помогают вычислять все нужные параметры. Самой популярной является Excel. В ней нет расшифровки формул, поэтому их нужно изучить заранее, чтобы затем только подставлять нужные значения.

Чтобы выполнить расчеты в Excel нужно заранее подготовить последовательность действий и подобрать нужные формулы.

Примерное заполнение табличных полей этой программы выглядит следующим образом:

  • Выполняется таблица с названиями показателей, их величиной и единицей выражения.
  • Вводятся данные для расчета, некоторые из которых берутся из справочников, другие задаются исходя из опыта или характеристик оборудования.
  • Вводятся формулы и алгоритмы вычисления.
Все расчеты программа вычисляет самостоятельно. В конце выдает суммарный результат. Наглядно увидеть примеры расчета с помощью Excel предлагаем на фото:



Внизу предоставлено видео, на котором рассказано как провести гидравлический расчет теплосети по каждому определенному параметру в программе ZuluNetTools с последующей перегонкой результатов в таблицы Excel:

Особенности выполнения вычислений в одно- и двухтрубной системе

Если в двухтрубной схеме осуществляется попутное движение теплоносителя, то для проведения расчетов выбирается кольцо с более нагруженным стояком, которое завязано через нижний радиатор, а в однотрубной системе выбирается кольцо с самым сильно нагруженным стояком.

Если используется тупиковое движение горячей воды, то для двухтрубной схемы берется кольцо нижней батареи, вмонтированной в самый дальний стояк. При горизонтальном виде разводки применяется самая загруженная ветка надподвального этажа.

Видео: Первый самостоятельный гидравлический расчет

В следующем видео предлагается узнать, в чем принцип подобных расчетов, а также как же можно их провести с помощью специальной программы Valtec, Excel или обычных математических подсчетов:


Лучше один раз потратить время на гидравлические вычисления отопительной системы, чем без него оказаться в непредвиденных обстоятельствах в зимний период. Ремонтные работы и холод в доме обойдутся намного дороже, даже если расчеты заказывать у частника.

Экономия тепла в жилище во многом зависит от грамотного расчета гидравлики, ее правильного монтажа, а также использования. Все элементы обогревающей системы (котел, теплопроводные трубы и радиаторы, отдающие тепло) должны быть связаны между собой так, чтобы сохранялись исходные параметры системы, независимо оттого, какое время года за окном и какие оказываются нагрузки.

Что обозначает расчет гидравлики и зачем он нужен

Сделать гидравлический расчет отопления – это значит правильно подобрать параметры определенных участков сети с учетом давления, чтобы по ним осуществлялся определенный расход теплоносителя.

Этот расчет дает возможность определить:

  • Потери давления на различных участках сети;
  • Пропускную способность трубопровода;
  • Оптимальный расход жидкости;
  • Необходимые показатели для выполнения гидравлической увязки.

Совмещая все полученные данные можно подобрать отопительные насосы.

Главная цель расчета гидравлики – обеспечение соответствия посчитанных расходов источника тепла с фактическими.

Количество попадающего в радиаторы источника тепла должно быть таким, чтобы получился обогревающий баланс внутри здания с учетом уличной температуры и температуры, заданной пользователем для каждой комнаты в отдельности.


Если отопление автономное, можно использовать такие методы расчета:

  • Используя характеристики сопротивления и проводимости;
  • По удельным расходам;
  • Путем сравнивания динамического давления;
  • По различным длинам, приведенным к одному показателю.

Расчет гидравлики – один из важнейших этапов при разработке систем отопления с жидким теплоносителем.

Прежде чем приступить к его осуществлению необходимо:

  • Определить баланс тепла в необходимых помещениях;
  • Выбрать тип приборов отопления и разместить их на чертежах здания;
  • Решить вопросы по конфигурации обогревательной системы, а также по видам применяемых труб и арматуры;
  • Начертить схему системы отопления, где будут видны номера, нагрузки и длины необходимых участков;
  • Определить основное циркуляционное кольцо, по которому движется теплоноситель.

Обычно для зданий с малым количеством этажей применятся двухтрубная отопительная система, а для построек с большой этажностью – однотрубная.

Автоматизированный гидравлический расчет системы отопления Excel

Чтобы было удобнее делать гидравлические расчеты, можно воспользоваться различными компьютерными программами, позволяющими выполнять точные вычисления. Одной из самых таких популярных программ считается Excel.

Кстати, если вы не знаете основ гидравлики, то сделать вам это будет трудно, даже в компьютерных программах. Это связано с тем, что в некоторых из них нет расшифровок формул и вычислений сопротивления в особо сложных цепочках.

Нюансы некоторых программ:

  • OvertopCO и DanfossCO могут вести расчеты систем с естественной циркуляцией;
  • HERZ C.O. 3.5 – работает по способу расчета удельных потерь давления;
  • Potok – отлично справляется с расчетами по изменяющимся перепадам температур по стоякам.

При вводе температурных данных нужно обязательно уточнять – по Цельсию идет вычисление или по Кельвину.

Что касается работы в Excel, то использовать электронные таблицы очень удобно. Нужно просто знать поочередность действий и точные вычислительные формулы. Вначале выбирается нужная ячейка, в которую вводятся данные. Дальнейший расчет происходит путем автоматического применения формул.


  • Разницу между горячим и холодным источником тепла для двухтрубной системы или расход жидкости для однотрубной;
  • Скорость движения источника тепла и его потока;
  • Плотность жидкости и параметры исследуемых участков (их длина в метрах и число находящихся там приборов).

Для расчета размеров труб внутри каждого участка как раз удобно пользоваться экселевскими таблицами.

Как вычислить гидравлическое сопротивление системы отопления

Чтобы решить из какого материала брать трубы, нужно узнать сопротивление гидравлики на всех участках системы обогрева и сравнить его.

Сопротивление может возникать в самой трубе из-за ее поворотов, сужений или расширений, а также в соединениях между шаровыми кранами, тройниками или балансирующими приборами.

Расчетным участком обычно считается труба с неменяющимся расходом жидкости, равным запланированному балансу тепла помещения.

Для расчета потерь берутся следующие данные, учитывая сопротивление арматуры:

  • Диаметр и длина трубы на нужном участке;
  • Параметры регулировочной арматуры от фирмы-производителя;
  • Скорость, с которой движется теплоноситель;
  • Шероховатость трубопровода и толщина его стенок;
  • Данные из справочника: потери трения и его коэффициент, плотность жидкости.

Если нужно самостоятельно вычислить удельные потери трения нужно знать внешний диаметр трубы, толщину ее стенки и скорость, с которой подается жидкость.

Чтобы найти гидравлическое сопротивление на одном участке, можно воспользоваться формулой Дарси-Вейсбаха:

Гидравлика системы отопления и ее увязка

Балансирование перепадов давления в системе отопления осуществляется с помощью запорной и регулировочной арматуры.


Увязка гидравлики рассчитывается исходя из:

  • Параметров труб по динамическому сопротивлению;
  • Технических свойств арматуры;
  • Общего расхода источника тепла;
  • Количестваимеющихся сопротивлений на расчетном участке.

Здесь нужно иметь в виду, что способность пропускать, давленческие перепады и крепления определяются для клапанов по отдельности. Именно по этим характеристикам вычисляются коэффициенты попадания источника тепла в каждый стояк, а затем в радиаторы.

Отсутствие гидравлической увязки в отопительной системе может привести к тому, что в некоторых помещениях будет очень сложно достичь нужной температуры.

Сопротивление гидравлики в основном циркуляционном кольце равно сумме потерь местных систем, первичного контура, теплообменника и теплогенератора.

Гидравлический расчет системы отопления (видео)

Выполняя гидравлический расчет, вы делаете отопительную систему более совершенной, правильно подбирая ее параметры таким образом, чтобы в любую погоду, при любых нагрузках расход источника тепла не превышал заданные нормы.