Магнитные свойства веществ. Реферат: Магнитные свойства вещества Магнитные свойства вещества глоссарий

Магнитными свойствами обладают в той или иной мере все материалы, так как эти свойства являются отражением структурных закономерностей, присущих веществу на микроуровне. Особенности структуры обусловливают различия в магнитных свойствах веществ, то есть в характере их взаимодействия с магнитным полем.

Строение вещества и магнетизм

Первая теория, объясняющая природу магнетизма через взаимосвязь электрических и магнитных явлений, создана французским физиком Ж.-М. Ампером в 20-х годах XIX века. В рамках этой теории Ампер предположил наличие в физических телах микроскопических замкнутых токов, обычно компенсирующих друг друга. Но у веществ, обладающих магнитными свойствами, такие «молекулярные токи» создают поверхностный ток, в результате чего материал становится постоянным магнитом. Эта гипотеза не нашла подтверждения, за исключением одной важнейшей идеи – о микротоках как источниках магнитных полей.

Микротоки в веществе действительно существуют благодаря движению электронов в атомах и создают магнитный момент. Кроме того, электроны имеют собственный магнитный момент квантовой природы.

Суммарный магнитный момент вещества, то есть совокупности элементарных токов в нем, в отношении к единице объема, определяет состояние намагниченности макроскопического тела. У большей части веществ моменты частиц ориентированы неупорядоченно (ведущую роль в этом играют тепловые хаотические колебания), и намагниченность практически равна нулю.

Поведение вещества в магнитном поле

При действии внешнего магнитного поля векторы магнитных моментов частиц изменяют направление – тело намагничивается, в нем появляется собственное магнитное поле. Характер этого изменения и его интенсивность, определяющие магнитные свойства веществ, обусловлены различными факторами:

  • особенности структуры электронных оболочек в атомах и молекулах вещества;
  • межатомные и межмолекулярные взаимодействия;
  • особенности структуры кристаллических решеток (анизотропия);
  • температура вещества;
  • напряженность и конфигурация магнитного поля и так далее.

Намагниченность вещества пропорциональна напряженности магнитного поля в нем. Их соотношение определяется особым коэффициентом – магнитной восприимчивостью. У вакуума она равна нулю, у некоторых веществ отрицательна.

Величину, характеризующую соотношение магнитной индукции и напряженности поля в веществе, принято называть магнитной проницаемостью. В вакууме индукция и напряженность совпадают, и проницаемость его равна единице. Магнитную проницаемость вещества можно выражать как относительную величину. Это соотношение абсолютных значений ее для данного вещества и для вакуума (последняя величина принята в качестве магнитной постоянной).

Классификация веществ по магнитным свойствам

По типу поведения различных твердых материалов, жидкостей, газов в магнитном поле выделяют несколько групп:

  • диамагнетики;
  • парамагнетики;
  • ферромагнетики;
  • ферримагнетики;
  • антиферромагнетики.

Основные магнитные характеристики вещества, лежащие в основе классификации – это магнитная восприимчивость и магнитная проницаемость. Охарактеризуем основные свойства, присущие каждой группе.


Диамагнетики

В силу некоторых особенностей строения электронных облаков у атомов (или молекул) диамагнетиков нет магнитного момента. Он появляется при возникновении внешнего поля. Индуцированное, наведенное поле имеет противоположное направление, и результирующее поле оказывается несколько слабее, чем внешнее. Правда, разница эта не может быть существенной.

Магнитная восприимчивость диамагнетиков выражается отрицательными числами с порядком величины от 10-4 до 10-6 и не зависит от напряженности поля; магнитная проницаемость ниже, чем у вакуума, на тот же порядок величины.

Наложение неоднородного магнитного поля ведет к тому, что диамагнетик выталкивается этим полем, так как стремится сместиться в область, где поле слабее. На этой особенности магнитных свойств веществ данной группы основан эффект диамагнитной левитации.

Диамагнетики представляют обширную группу веществ. В нее входят такие металлы, как медь, цинк, золото, серебро, висмут. Также к ней относятся кремний, германий, фосфор, азот, водород, инертные газы. Из сложных веществ – вода, многие соли, органические соединения. Идеальные диамагнетики – это сверхпроводники. Магнитная проницаемость их равна нулю. Поле внутрь сверхпроводника проникнуть не может.

Парамагнетики

Принадлежащим к данной группе веществам свойственна положительная магнитная восприимчивость (очень невысокая, порядка 10-5 – 10-6). Намагничиваются они параллельно вектору накладываемого поля, то есть втягиваются в него, но взаимодействие парамагнетиков с ним очень слабое, как и у диамагнетиков. Магнитная проницаемость их близка к значению проницаемости вакуума, только слегка превосходит его.


В отсутствие внешнего поля парамагнетики, как правило, не обладают намагниченностью: их атомы имеют собственные магнитные моменты, но ориентированы они хаотически из-за тепловых колебаний. При низких температурах парамагнетики могут иметь собственную намагниченность малой величины, сильно зависящую от внешних воздействий. Однако влияние теплового движения слишком велико, вследствие чего элементарные магнитные моменты парамагнетиков никогда не устанавливаются точно по направлению поля. В этом и заключается причина их низкой магнитной восприимчивости.

Силы межатомного и межмолекулярного взаимодействия также играют значительную роль, способствуя либо, напротив, оказывая сопротивление упорядочиванию элементарных магнитных моментов. Это обусловливает большое разнообразие магнитных свойств вещества парамагнетиков.

К этой группе веществ относятся многие металлы, например вольфрам, алюминий, марганец, натрий, магний. Парамагнетиками являются кислород, соли железа, некоторые оксиды.

Ферромагнетики

Существует небольшая группа веществ, которые благодаря особенностям структуры обладают очень высокими магнитными свойствами. Первым металлом, у которого обнаружились эти качества, было железо, и благодаря ему данная группа получила наименование ферромагнетиков.


Строение ферромагнетиков характеризуется наличием особых структур – доменов. Это области, где намагниченность образуется спонтанно. Благодаря особенностям межатомного и межмолекулярного взаимодействия у ферромагнетиков устанавливается наиболее энергетически выгодное расположение атомных и электронных магнитных моментов. Они приобретают параллельную направленность по так называемым направлениям легкого намагничивания. Однако весь объем, например, кристалла железа не может приобрести однонаправленную самопроизвольную намагниченность – это повышало бы общую энергию системы. Поэтому система разбивается на участки, спонтанная намагниченность которых в ферромагнитном теле компенсирует друг друга. Так образуются домены.

Магнитная восприимчивость ферромагнетиков чрезвычайно велика, может составлять от нескольких десятков до сотен тысяч и в большой степени зависит от напряженности внешнего поля. Причина этого заключается в том, что ориентация доменов по направлению поля также оказывается энергетически выгодной. Направление вектора намагниченности части доменов обязательно совпадет с вектором напряженности поля, и энергия их будет наименьшей. Такие области разрастаются, и одновременно сокращаются невыгодно ориентированные домены. Намагниченность увеличивается, и нарастает магнитная индукция. Процесс происходит неравномерно, и график связи индукции с напряженностью внешнего поля называют кривой намагничивания ферромагнитного вещества.

При повышении температуры до некоторой пороговой величины, называемой точкой Кюри, доменное строение вследствие усиления теплового движения нарушается. В этих условиях ферромагнетик проявляет парамагнитные качества.

Помимо железа и стали, ферромагнитные свойства присущи кобальту и никелю, некоторым сплавам и редкоземельным металлам.

Ферримагнетики и антиферромагнетики

Двум видам магнетиков также свойственна доменная структура, но магнитные моменты в них ориентируются антипараллельно. Это такие группы, как:

  • Антиферромагнетики. Магнитные моменты доменов в этих веществах равны по численному значению и взаимно скомпенсированы. По этой причине магнитные свойства материалов антиферромагнетиков характеризуются крайне низкой магнитной восприимчивостью. Во внешнем поле они проявляют себя как очень слабые парамагнетики. Выше пороговой температуры, называемой точкой Нееля, такое вещество становится обычным парамагнетиком. Антиферромагнетиками являются хром, марганец, некоторые редкоземельные металлы, актиноиды. Некоторые антиферромагнитные сплавы имеют две точки Нееля. Когда температура меньше нижнего порога, материал становится ферромагнитным.
  • Ферримагнетики. У веществ этого класса величины магнитных моментов разных структурных единиц не равны, благодаря чему не происходит их взаимной компенсации. Магнитная восприимчивость их зависит от температуры и напряженности намагничивающего поля. К ферримагнетикам относятся ферриты, в состав которых входит оксид железа.

Понятие о гистерезисе. Постоянный магнетизм

Ферромагнитные и ферримагнитные материалы обладают свойством остаточной намагниченности. Это свойство обусловлено явлением гистерезиса – запаздывания. Суть его состоит в отставании изменения намагниченности материала от изменения внешнего поля. Если по достижении насыщения снижать напряженность поля, намагниченность будет меняться не в соответствии с кривой намагничивания, а более пологим образом, так как значительная часть доменов остается ориентирована соответственно вектору поля. Благодаря этому явлению существуют постоянные магниты.

Размагничивание происходит при перемене направления поля, при достижении им некоторой величины, называемой коэрцитивной (задерживающей) силой. Чем больше ее величина, тем лучше вещество удерживает остаточную намагниченность. Замыкание петли гистерезиса происходит при следующем изменении напряженности по направлению и величине.


Магнитная твердость и мягкость

Явление гистерезиса сильно влияет на магнитные свойства материалов. Вещества, у которых на графике гистерезиса петля расширена, требующие для размагничивания значительной коэрцитивной силы, называют магнитотвердыми, материалы с узкой петлей, гораздо легче поддающиеся размагничиванию – магнитомягкими.

В переменных полях магнитный гистерезис проявляется особенно ярко. Он всегда сопровождается выделением тепла. Кроме того, в переменном магнитном поле в магнетике возникают вихревые индукционные токи, выделяющие особенно много тепла.

Многие ферромагнетики и ферримагнетики применяются в оборудовании, функционирующем на переменном токе (например, сердечники электромагнитов) и при работе все время перемагничиваются. Для того чтобы уменьшить энергопотери на гистерезис и динамические потери на вихревые токи, в таком оборудовании применяют магнитомягкие материалы, такие как чистое железо, ферриты, электротехнические стали, сплавы (например, пермаллой). Есть и другие способы минимизировать потери энергии.

Магнитотвердые вещества, напротив, используются в оборудовании, работающем на постоянном магнитном поле. Они значительно дольше сохраняют остаточную намагниченность, но их труднее намагнитить до насыщения. Многие из них в настоящее время представляют собой композиты разных типов, например, металлокерамические или неодимовые магниты.

Еще немного об использовании магнитных материалов

Современные высокотехнологичные производства требуют применения магнитов, изготовляемых из конструкционных, в том числе композитных материалов с заданными магнитными свойствами веществ. Таковы, например, магнитные нанокомпозиты ферромагнетик-сверхпроводник или ферромагнетик-парамагнетик, используемые в спинтронике, или магнитополимеры – гели, эластомеры, латексы, феррожидкости, находящие самое широкое применение.


Различные магнитные сплавы тоже чрезвычайно востребованы. Сплав неодим-железо-бор характеризуется высокой устойчивостью к размагничиванию и мощностью: упомянутые выше неодимовые магниты, являясь наиболее мощными на сегодняшний день постоянными магнитами, применяются в самых разных отраслях, несмотря на наличие некоторых недостатков, таких как хрупкость. Их используют в магнитно-резонансных томографах, ветрогенераторах, при очистке технических жидкостей и подъеме тяжелых грузов.

Очень интересны перспективы использования антиферромагнетиков в низкотемпературных наноструктурах для изготовления ячеек памяти, позволяющих существенно увеличивать плотность записи без нарушения состояния соседних битов.

Надо полагать, что применение магнитных свойств веществ с заданными характеристиками будет все более расширяться и обеспечит серьезные технологические прорывы в разных областях.

Если разместить в магнитном поле какой-либо предмет, то его «поведение» и тип внутренних структурных изменений будет зависеть от материала, из которого предмет изготовлен. Все известные вещества можно разделить на пять основных групп: парамагнетики, ферромагнетики и антиферромагнетики, ферримагнетики и диамагнетики. В соответствии с данной классификацией различают магнитные свойства вещества. Чтобы разобраться, что же скрывается за указанными терминами, рассмотрим каждую группу более подробно.

Вещества, проявляющие свойства парамагнетизма, характеризуются магнитной проницаемостью с положительным знаком, причем вне зависимости от значения напряженности внешнего магнитного поля, в котором оказывается предмет. Наиболее известными представителями этой группы являются и газообразный кислород, металлы щелочноземельной и щелочной групп, а также железистые соли.

Высокая магнитная восприимчивость положительного знака (достигает 1 млн.) присуща ферромагнетикам. Будучи зависимой от интенсивности внешнего поля и температуры, восприимчивость варьирует в широких пределах. Важно отметить, что так как моменты элементарных частиц разных подрешеток в структуре равны, то суммарное значение момента нулевое.

Как по названию, так и по некоторым свойствам им близки ферримагнитные вещества. Их объединяет высокая зависимость восприимчивости от нагревания и значения напряженности поля, однако есть и различия. размещенных в подрешетках атомов друг другу не равны, поэтому, в отличие от предыдущей группы, общий момент отличен от нуля. Веществу присуща самопроизвольная намагниченность. Связь подрешеток антипараллельна. Наиболее известны ферриты. Магнитные свойства веществ данной группы высоки, поэтому они часто применяются в технике.

Особый интерес представляет группа антиферромагнетиков. При охлаждении подобных веществ ниже определенной температурной границы атомы и их ионы, размещенные в структуре кристаллической решетки, естественным образом изменяют свои магнитные моменты, приобретая противопараллельное ориентирование. Совершенно иной процесс имеет место при нагревании вещества - у него регистрируются магнитные свойства, характерные для группы парамагнетиков. Примерами могут служить карбонаты, оксиды и пр.

Есть микроскопические круговые токи (молекулярные токи ). Эта идея в дальнейшем, после открытия электрона и строения атома, подтвердилась: эти токи создаются движением электронов вокруг ядра и, так как ориентированы одинаково, в сумме образуют поле внутри и вокруг магнита.

На рисунке а плоскости, в которых размещены элементарные электрические токи , ориентированы беспорядочно из-за хаотичного теплового движения атомов, и вещество не проявляет магнитных свойств. В намагниченном состоянии (под действием, например, внешнего магнитного поля) (рисунок б ) эти плоскости ориентированы одинаково, и их действия суммируются.

Магнитная проницаемость.

Реакция среды на воздействие внешнего магнитного поля с индукцией В0 (поле в вакууме) определяется магнитной восприимчивостью μ :

где В — индукция магнитного поля в веществе. Магнитная проницаемость аналогична диэлектрической проницаемости ɛ .

По своим магнитным свойствам вещества разделяются на диамагнетики , парамагнетики и фер ромагнетики . У диамагнетиков коэффициент μ , который характеризует магнитные свойства среды, меньше единицы (к примеру, у висмута μ = 0,999824); у парамагнетиков μ > 1 (у платины μ - 1,00036); у ферромагнетиков μ ≫ 1 (железо , никель , кобальт).

Диамагнетики отталкиваются от магнита, парамагнетики — притягиваются к нему. По этим призна-кам их можно отличить друг от друга. У многих веществ магнитная проницаемость почти не отличается от единицы, но у ферромагнетиков сильно превосходит ее, достигая нескольких десятков тысяч единиц.

Ферромагнетики.

Самые сильные магнитные свойства проявляют ферромагнетики. Магнитные поля, которые создаваются ферромагнетиками, гораздо сильнее внешнего намагничивающего по-ля. Правда, магнитные поля ферромагнетиков создаются не вследствие обращения электронов вокруг ядер — орбитального магнитного момента , а вследствие собственного вращения электрона — собственного магнитного момента, называемого спином .

Температура Кюри (Т с ) — это температура, выше которой ферромагнитные материалы те-ряют свои магнитные свойства. Для каждого ферромагнетика она своя. Например, для железа Т с = 753 °С, для никеля Т с = 365 °С, для кобальта Т с = 1000 °С. Существуют ферромагнитные спла-вы, у которых Т с < 100 °С.

Первые детальные исследования магнитных свойств ферромагнетиков были выполнены выдающимся русским физиком А. Г. Столетовым (1839-1896).

Ферромагнетики применяются довольно широко: в качестве постоянных магнитов (в электроизмерительных приборах, громкоговорителях, телефонах и так далее), стальных сердечников в транс-форматорах, генераторах, электродвигателях (для усиления магнитного поля и экономии элек-троэнергии). На магнитных лентах, которые изготовлены из ферромагнетиков, осуществляется запись звука и изображения для магнитофонов и видеомагнитофонов. На тонкие магнитные пленки про-изводится запись информации для запоминающих устройств в электронно-вычислительных ма-шинах.

По магнитным свойствам все вещества в природе делятся на:

Электроны вращаются по орбитам и вокруг ядра, а значит от этого движения создаются магнитные поля. Так же магнитное поле есть и у ядра.

У диамагнетиков все эти поля скомпенсированы, а значит, атом не намагничен. При воздействии внешнего магнитного поля возникает наведенное поле противоположное внешнему.

У пара- и ферромагнетиков большая часть полей направлена одинаково, поэтому атом становится элементарным магнитом. Атомы парамагнетика обладают собственными полями, которые под действием внешних полей ориентируются по полю и тем самым создают результирующее поле, превышающее внешнее. Парамагнетики втягиваются в магнитное поле. В отсутствие внешнего магнитного поля парамагнетик не намагничен, так как из-за теплового движения собственные магнитные моменты атомов ориентированы совершенно беспорядочно.

У ферромагнетиков, кроме того, что атомы намагничены, возникают еще и зоны самопроизвольного намагничивания – домены . В этих зонах атомы, действуя друг на друга своими магнитными полями, ориентируются в определенном направлении.


Если на ферромагнетик не действовало внешнее магнитное поле, то в результате теплового движения домены дезориентированы и вещество не намагничено.

При внесении ферромагнетика во внешнее магнитное поле, домены начинают разворачиваться, ориентируясь по полю, тем самым усиливая его. Если увеличивать внешнее поле, то все больше домен развернется. При каком-то значении поля все домены развернутся, и магнитное поле вещества расти не будет. Это насыщение

Если убрать внешнее поле, то часть домен дезориентируются из-за тепла, но большая их часть останется в прежнем положении, а значит вещество сохранит намагниченность. Это остаточный магнетизм .

Петля гистерезиса.

Гистерезис – это перемагничивание.

· Участок ОА. При увеличении намагничивающего тока (усилении внешнего магнитного поля Н), резко растет магнитный поток Ф, так как домены массово начинают выстраиваться. При некоторой силе намагничивающего тока рост Ф замедляется, большинство домен выстроились (калено намагничивания)

· Точка А. Как бы мы не увеличивали внешнее магнитное поле, магнитный поток ферромагнетика не растет. Наступило насыщение, все домены сориентированы и поле увеличивать нечему.

· Участок АВ. Уменьшаем внешнее поле, Ф уменьшается, но не по той же кривой и не до нуля.

· Точка В. Часть домен дезориентировались, а часть осталась в прежнем положении. Это остаточный магнетизм.

· Участок ВС. Чтобы убрать остаточный магнетизм, нужно пропустить обратный ток, то есть сменить полярность внешнего поля. Напряженность внешнего поля, убирающая остаточный магнетизм, называется коэрцитивной силой .

· Участок СD. Если увеличивать обратный ток, то магнитный поток будет расти в обратном направлении до насыщения. И так далее петля замкнется.

Вещества с узкой петлей легко намагничиваются и так же размагничиваются. Это магнитомягкие материалы (электротехническая сталь).

Магнитотвердые материалы (с широкой петлей) используют для постоянных магнитов, так как их тяжело размагнитить.

При перемагничивании домены переориентируясь, трутся друг о друга, и выделяется теплота. Она идет на бесполезный нагрев вещества.

Потери на гистерезис – это потери при перемагничивании, идущие на тепло.

Магнитная цепь.

Магнитная цепь – это совокупность элементов, предназначенных для создания и проведения магнитного потока.

К магнитной цепи МПТ относятся: главные полюса, воздушные зазоры, сердечник якоря, корпус.

Магнитодвижущая сила – это способность тока создавать магнитный поток. Она равна сумме токов, создающих магнитный поток.

Закон Ома для магнитной цепи: магнитный поток, проходящий по магнитной цепи прямо пропорционален МДС и обратно магнитному сопротивлению цепи.

Магнитное сопротивление – это сопротивление среды распространению магнитного поля. Оно обратно магнитной проницаемости.

Оно зависит от:

· длины магнитопровода L

· площади поперечного сечения магнитопровода S

· материала магнитопровода, то есть его магнитной проницаемости µ

Магнитные свойства вещества

Во всех телах, помещенных в магнитное поле, возникает магнитный момент. Это явление называется намагничиванием .

Намагниченное тело (магнетик) создает дополнительное магнитное поле с индукцией B ′, которая взаимодействует с индукцией B 0 = μ а H , обусловленной макроскопическими токами. Оба поля дают результирующее поле с индукцией B , которая получается в результате векторного сложения B ′ и B 0 .

В молекулах вещества циркулируют замкнутые токи; каждый такой ток имеет магнитный момент; в отсутствие внешнего магнитною поля молекулярные токи ориентированы хаотически и среднее поле, создаваемое ими, будет равно нулю. Под действием магнитного поля магнитные моменты молекул ориентируются преимущественно вдоль поля, вследствие чего вещество намагничивается. Мерой намагничивания вещества (магнетика) является вектор намагничивания. Вектор намагничивании I равен векторной сумме всех магнитных моментов p m молекул, заключенных в единице объема вещества:

Величина χ называется магнитной восприимчивостью – величина безразмерная.

В системе СИ: В системе СГСМ:
B ′ = μ I B ′ = 4χ I 2)
B = μ 0 H + μ I B = H + 4χ I 3)
μ = 1 + χ μ = 1 + 4π χ 4)

Кривая, выражающая зависимость между H и B или H и I , называется кривой намагничивания .

Вещества, для которых χ > 0 (но незначительно), называются парамагнитными (парамагнетиками ); вещества, для которых χ < 0, называются диамагнитными (диамагнетиками ). Вещества, у которых χ намного больше единицы, называются ферромагнетиками .

Ферромагнетики отличаются от парамагнетиков и диамагнетиков рядом свойств.

а) Кривая намагничивания ферромагнетиков имеет сложный характер (рис.1), для парамагнетиков она представляет прямую линию с положительным угловым
коэффициентом, для диамагнетиков – прямую с отрицательным угловым коэффициентом. Магнитная восприимчивость и проницаемость ферромагнетиков зависит от напряженности поля; у парамагнетиков и диамагнетиков этой зависимости нет.

Для ферромагнетиков обычно указывается начальная магнитная проницаемость (μ нач) – предельное значение магнитной проницаемости, когда напряженность и индукция поля близки к нулю, т. е.

Кривая зависимости μ от H для ферромагнетиков проходит через максимум. В таблицах обычно указывается и максимальное значение (μ макс).

б) Магнитная восприимчивость ферромагнетиков растет с увеличением температуры. При некоторой температуре T к ферромагнетик превращается в парамагнетик; эта температура называется температурой Кюри (точкой Кюри ). При температурах выше точки Кюри вещество является парамагнетиком. Вблизи температуры Кюри магнитная восприимчивость ферромагнетика резки возрастает.

Магнитная восприимчивость диамагнетиков и некоторых парамагнетиков (например, в щелочных металлах) не зависит от температуры. Магнитная восприимчивость парамагнетиков (за немногими исключениями) изменяется обратно пропорционально абсолютной температуре.

в) Размагниченный ферромагнетик намагничивается магнитным полем; зависимость B (или I ) от H при намагничивании будет выражаться кривой 0–1 (рис.1). Эта кривая называется начальной кривой намагничивания. Намагниченность в слабых полях растет быстро, затем рост замедляется и, наконец, наступает состояние насыщения, при котором намагниченность практически остается постоянной при дальнейшем увеличении поля.

Максимальное значение намагниченности называется намагниченностью насыщения (I s ).

При уменьшении H до нуля B I ) будут изменяться по кривой 1–2; происходит отставание изменения индукции от изменения напряженности поля. Это явление называется магнитным гистерезисом .

Величина индукции, сохраняющаяся в ферромагнетике после снятия поля (когда H = 0), называется остаточной индукцией (B r ). На рис.1 B r равна отрезку 0–2. Чтобы размагнитить ферромагнетик, нужно снять остаточную индукцию. Для этого необходимо создать поле противоположного направления. Изменение индукции в попе противоположного направления изобразится кривой 2–3–4.

Напряженность поля H c (отрезок 0–3 на рис.8), при которой индукция равна нулю, называется коэрцитивной напряженностью (силой).

Зависимость B (или I ) от периодически изменяющейся напряженности магнитного поля от +H до -H выражается замкнутой кривой 1–2–3–4–5–6–1. Такая кривая называется петлей гистерезиса .

За один цикл изменения напряженности поля от +H до -H расходуется энергия, пропорциональная площади петли гистерезиса.

Свойства ферромагнетиков объясняются наличием в них областей, которые в отсутствие внешнего магнитного поля самопроизвольно намагничены до насыщения. Эти области называют доменами. Но расположение и намагниченность этих областей таковы, что и отсутствие поля общая намагниченность всего тела равна нулю.

Когда ферромагнетик находится в магнитном поле, границы между доменами смещаются (в слабых полях) и векторы намагниченности доменов поворачиваются по направлению намагничивающего поля (в более сильных полях), в результате чего ферромагнетик намагничивается.

Ферромагнетик, помещенный в магнитное поле, изменяет свои линейные размеры, т. е. деформируется. Это явление называется магнитострикцией. Относительное удлинение зависит от природы ферромагнетика и напряженности магнитного поля.

Величина магнитострикционного эффекта не зависит от направления поля; у одних веществ наблюдается укорочение (никель), у других удлинение (железо в слабых полях) вдоль ноля. Это явление используется для получения ультразвуковых колебаний с частотами до 100 кГц.